Thermal Insulation Performance of Aerogel Nano-Porous Materials: Characterization and Test Methods
Abstract
:1. The Structural Characteristics
2. Analysis on Heat Transfer Mechanism
3. Characterization Methods of Thermal Insulation Performance
3.1. Calculation Models of Gas, Solid, Gas-Solid Coupling, and Radiation
3.1.1. Calculation Model of Gas Thermal Conductivity
Empirical Correlation Formula
Numerical Simulation Method
Theoretical Derivation Method
3.1.2. Calculation Model of Solid Thermal Conductivity
Empirical Correlation Formula
Numerical Simulation Method
Theoretical Derivation Method
3.1.3. Calculation Model of Gas-Solid Coupling Thermal Conductivity
3.1.4. Calculation Model of Radiation Thermal Conductivity
3.2. Calculation Models of Effective Thermal Conductivity
3.2.1. Decoupling Method
3.2.2. Equivalent Circuit Method
3.2.3. Numerical Simulation Method
4. Test Methods of Thermal Insulation Performance
4.1. Heat Conduction Heating Method
4.1.1. Steady State Method
4.1.2. Unsteady State Method
4.2. Infrared Radiation Heating Method
4.3. Convection Heating Method
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, L.; Luigi, M.D.; Petit, D.; Hu, Y.; Chen, Y.; Armstrong, J.N.; Li, Y.C.; Ren, S. Nanoengineering porous silica for thermal management. ACS Appl. Nano Mater. 2022, 5, 2655–2663. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Y.; Dong, Y.; Fan, H.; Chen, P.; Qiu, L.; Jiang, Q. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity. Appl. Surf. Sci. 2014, 317, 338–349. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Dong, W.; Lin, L.; Zhu, X.; Liu, Q.; Zhang, Y.; Zhai, N.; Zhou, Z.; Wang, Y.; et al. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J. Non-Cryst. Solids 2021, 553, 120517. [Google Scholar] [CrossRef]
- He, Y.-L.; Xie, T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015, 81, 28–50. [Google Scholar] [CrossRef]
- Hostler, S.R.; Abramson, A.R.; Gawryla, M.D.; Bandi, S.A.; Schiraldi, D.A. Thermal conductivity of a clay-based aerogel. Int. J. Heat Mass Transf. 2009, 52, 665–669. [Google Scholar] [CrossRef]
- Fesmire, J.E. Aerogel-Based Insulation Materials for Cryogenic Applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 502, 012188. [Google Scholar] [CrossRef]
- Fu, T.; Tang, J.; Chen, K.; Zhang, F. Determination of Scattering and Absorption Coefficients of Porous Silica Aerogel Composites. J. Heat Transf. 2016, 138, 032702.1–032702.7. [Google Scholar] [CrossRef]
- Fu, T.; Tang, J.; Chen, K.; Zhang, F. Visible, near-infrared and infrared optical properties of silica aerogels. Infrared Phys. Technol. 2015, 71, 121–126. [Google Scholar] [CrossRef]
- Qu, Z.G.; Fu, Y.D.; Liu, Y.; Zhou, L. Approach for predicting effective thermal conductivity of aerogel materials through a modified lattice Boltzmann method. Appl. Therm. Eng. 2018, 132, 730–739. [Google Scholar] [CrossRef]
- Demilecamps, A.; Alves, M.; Rigacci, A.; Reichenauer, G.; Budtova, T. Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J. Non-Cryst. Solids 2016, 452, 259–265. [Google Scholar] [CrossRef]
- Hrubesh, L.W.; Pekala, R.W. Thermal properties of organic and inorganic aerogels. J. Mater. Res. 2011, 9, 731–738. [Google Scholar] [CrossRef]
- Merillas, B.; Vareda, J.P.; Martin-de Leon, J.; Rodriguez-Perez, M.A.; Duraes, L. Thermal Conductivity of Nanoporous Materials: Where Is the Limit? Polymers 2022, 14, 2556. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.H.; Bi, C.; Zhao, Y.; Tao, W.Q. Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy 2015, 90, 701–721. [Google Scholar] [CrossRef]
- Sen, S.; Singh, A.; Bera, C.; Roy, S.; Kailasam, K. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: A review. Cellulose 2022, 29, 4805–4833. [Google Scholar] [CrossRef]
- Noroozi, M.; Panahi-Sarmad, M.; Abrisham, M.; Amirkiai, A.; Asghari, N.; Golbaten-Mofrad, H.; Karimpour-Motlagh, N.; Goodarzi, V.; Bahramian, A.R.; Zahiri, B. Nanostructure of Aerogels and Their Applications in Thermal Energy Insulation. ACS Appl. Energy Mater. 2019, 2, 5319–5349. [Google Scholar] [CrossRef]
- Saboktakin, A.; Saboktakin, M.R. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int. J. Biol. Macromol. 2015, 72, 230–234. [Google Scholar] [CrossRef]
- Yang, H.; Ye, F. Microtexture, microstructure evolution, and thermal insulation properties of Si(3)N(4)/silica aerogel composites at high temperatures. RSC Adv. 2022, 12, 12226–12234. [Google Scholar] [CrossRef]
- Qian, G.; Wu, B.; Qin, Z.; Li, X.; Zheng, Z.; Xia, R.; Qian, J. Enhanced Thermal Conductivity via In Situ Constructed CNT Aerogel Structure in Composites. Adv. Mater. Interfaces 2022, 9, 2102098. [Google Scholar] [CrossRef]
- Hayase, G.; Kugimiya, K.; Ogawa, M.; Kodera, Y.; Kanamori, K.; Nakanishi, K. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J. Mater. Chem. A 2014, 2, 6525–6531. [Google Scholar] [CrossRef]
- Calvert, M.; Baker, J. Thermal Conductivity and Gaseous Microscale Transport. J. Thermophys. Heat Transf. 1998, 12, 138–145. [Google Scholar] [CrossRef]
- Meng, C.; Yuan, H. Examination on aerogel based on the heat transfer characteristics of nanotechnology. Ferroelectrics 2021, 580, 26–41. [Google Scholar] [CrossRef]
- Lallich, S.; Enguehard, F.; Baillis, D. Experimental determination and modeling of the radiative properties of silica nanoporous matrices. J. Heat Transf. 2009, 131, 082701.1–082701.12. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Yan, J.H.; Wang, F.; Huang, Q.X.; Chi, Y.; Cen, K.F. Inverse radiation analysis of simultaneous estimation of temperature field and radiative properties in a two-dimensional participating medium. Int. J. Heat Mass Transf. 2010, 53, 4474–4481. [Google Scholar] [CrossRef]
- Torabi, A.; Abedian, A.; Farsi, M.A. An approximate methodology to simulate combined conduction-radiation heat transfer for multi-layer insulator. Sci. Iran. 2020, 27, 2924–2932. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.-J.; Duan, Y.-Y.; Wang, X.-D.; Wang, B.-X. Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J. Nanoparticle Res. 2012, 14, 1024. [Google Scholar] [CrossRef]
- Huang, D.; Shen, Y.; Yuan, Q.; Wang, C.; Shi, L. Preparation and characterization of silica aerogel/polytetrafluoroethylene composites. Mater. Res. Express 2019, 6, 115021. [Google Scholar] [CrossRef]
- Qu, M.-L.; Tian, S.-Q.; Fan, L.-W.; Yu, Z.-T.; Ge, J. An experimental investigation and fractal modeling on the effective thermal conductivity of novel autoclaved aerated concrete (AAC)-based composites with silica aerogels (SA). Appl. Therm. Eng. 2020, 179, 115770. [Google Scholar] [CrossRef]
- Fricke, J.; Lu, X.; Wang, P.; Büttner, D.; Heinemann, U. Optimization of monolithic silica aerogel insulants. Int. J. Heat Mass Transf. 1992, 35, 2305–2309. [Google Scholar] [CrossRef]
- Smith, B.R.; Amon, C.H. Effect of sub-continuum energy transport on effective thermal conductivity in nanoporous silica (Aerogel). In Proceedings of the Asme International Mechanical Engineering Congress & Exposition, Washington, DC, USA, 15–21 November 2003. [Google Scholar]
- Yang, M.; Li, X. Optimum convergence parameters of lattice Boltzmann method for predicting effective thermal conductivity. Comput. Methods Appl. Mech. Eng. 2022, 394, 114891. [Google Scholar] [CrossRef]
- Denpoh, K. Modeling of rarefied gas heat conduction between wafer and susceptor. IEEE Trans. Semicond. Manuf. 1998, 11, 25–29. [Google Scholar] [CrossRef]
- Kaganer, M.G. Thermal Insulations in Cryogenic Engineering; Israel Program for Scientifific Translations: Jerusalem, Israel, 1969. [Google Scholar]
- Reichenauer, G.; Heinemann, U.; Ebert, H.P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf. A Physicochem. Eng. Asp. 2007, 300, 204–210. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.H.; Tao, W.Q. Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. J. Non-Cryst. Solids 2012, 358, 3124–3128. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.J.; Cao, W.; Greif, R. Pore size distribution and apparent gas thermal conductivity of silica aerogel. J. Heat Transf. 1994, 116, 756–759. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.J.; Greif, R. Mean free path and apparent thermal conductivity of a gas in a porous medium. J. Heat Transf. 1995, 117, 758–761. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.J.; Greif, R. Transport properties of gas in silica aerogel. J. Non-Cryst. Solids 1995, 186, 264–270. [Google Scholar] [CrossRef]
- Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transf. 1996, 118, 539–545. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, L.; Peng, X. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 2003, 46, 2665–2672. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Duan, Y.-Y.; Wang, X.-D.; Wang, B.-X. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J. Non-Cryst. Solids 2012, 358, 1287–1297. [Google Scholar] [CrossRef]
- Xie, T.; He, Y.-L.; Hu, Z.-J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int. J. Heat Mass Transf. 2013, 58, 540–552. [Google Scholar] [CrossRef]
- Han, Y.-F.; Xia, X.-L.; Tan, H.-P.; Liu, H.-D. Modeling of phonon heat transfer in spherical segment of silica aerogel grains. Phys. B Condens. Matter 2013, 420, 58–63. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B Condens. Matter 1992, 46, 6131–6140. [Google Scholar] [CrossRef]
- Hopkins, P.E.; Kaehr, B.; Piekos, E.S.; Dunphy, D.; Jeffrey Brinker, C. Minimum thermal conductivity considerations in aerogel thin films. J. Appl. Phys. 2012, 111, 1135. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.-Y.; Li, Z.-Y. Modeling of the apparent solid thermal conductivity of aerogel. Int. J. Heat Mass Transf. 2018, 120, 724–730. [Google Scholar] [CrossRef]
- Dames, C.; Chen, G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 2004, 95, 682–693. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.H. Effective thermal conductivity of the solid backbone of aerogel. Int. J. Heat Mass Transf. 2013, 64, 452–456. [Google Scholar] [CrossRef]
- Obori, M.; Suh, D.; Yamasaki, S.; Kodama, T.; Saito, T.; Isogai, A.; Shiomi, J. Parametric Model to Analyze the Components of the Thermal Conductivity of a Cellulose-Nanofibril Aerogel. Phys. Rev. Appl. 2019, 11, 024044. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.R.; Beutler, P.D.; Amon, C.H. Thermal transport network model for high-porosity materials: Application to nanoporous aerogels. In Proceedings of the Asme Summer Heat Transfer Conference Collocated with the Asme Pacific Rim Technical Conference & Exhibition on Integration & Packaging of Mems, San Francisco, CA, USA, 17–22 July 2005. [Google Scholar]
- Pang, H.; Li, Z. Experimental investigations on the thermal insulation performance of SiC opacifier doped silica aerogel at large temperature difference. Int. J. Therm. Sci. 2021, 160, 106681. [Google Scholar] [CrossRef]
- Swimm, K.; Reichenauer, G.; Vidi, S.; Ebert, H.-P. Impact of thermal coupling effects on the effective thermal conductivity of aerogels. J. Sol-Gel Sci. Technol. 2017, 84, 466–474. [Google Scholar] [CrossRef]
- Swimm, K.; Reichenauer, G.; Vidi, S.; Ebert, H.P. Gas Pressure Dependence of the Heat Transport in Porous Solids with Pores Smaller than 10 μm. Int. J. Thermophys. 2009, 30, 1329–1342. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.H.; Hu, Z.J.; Yang, H.L.; Li, J.N. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int. J. Heat Mass Transf. 2014, 79, 126–136. [Google Scholar] [CrossRef]
- Swimm, K.; Vidi, S.; Reichenauer, G.; Ebert, H.P. Coupling of gaseous and solid thermal conduction in porous solids. J. Non-Cryst. Solids 2017, 456, 114–124. [Google Scholar] [CrossRef]
- Folgar, C.; Folz, D.; Suchicital, C.; Clark, D. Microstructural evolution in silica aerogel. J. Non-Cryst. Solids 2007, 353, 1483–1490. [Google Scholar] [CrossRef]
- Liu, H.; Xia, X.; Xie, X.; Ai, Q.; Li, D. Experiment and identification of thermal conductivity and extinction coefficient of silica aerogel composite. Int. J. Therm. Sci. 2017, 121, 192–203. [Google Scholar] [CrossRef]
- He, F.; Qi, Z.; Zhen, W.; Wu, J.; Huang, Y.; Xiong, X.; Zhang, R. Thermal Conductivity of Silica Aerogel Thermal Insulation Coatings. Int. J. Thermophys. 2019, 40, 92. [Google Scholar] [CrossRef]
- Lou, F.; Dong, S.; Ma, Y.; Qi, B.; Zhu, K. Numerical Study of the Influence of Coupling Interface Emissivity on Aerogel Metal Thermal Protection Performance. Gels 2021, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.J.; Lee, K.H.; Yim, T.J.; Kim, S.Y.; Yoo, K.P. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids 2002, 298, 287–292. [Google Scholar] [CrossRef]
- Lu, X.; Arduini-Schuster, M.C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R.W. Thermal conductivity of monolithic organic aerogels. Science 1992, 255, 971–972. [Google Scholar] [CrossRef]
- Lu, X.; Caps, R.; Fricke, J.; Alviso, C.T.; Pekala, R.W. Correlation between structure and thermal conductivity aerogels. J. Non-Cryst. Solids 1995, 188, 226–234. [Google Scholar] [CrossRef]
- Lee, S.-C.; Cunnington, G.R. Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation. J. Thermophys. Heat Transf. 2000, 14, 121–136. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Li, Y. Measuring radiative properties of silica aerogel composite from FTIR transmittance test using KBr as diluents. Exp. Therm. Fluid Sci. 2018, 91, 144–154. [Google Scholar] [CrossRef]
- Soorbaghi, F.P.; Kokabi, M.; Bahramian, A.R. Predicting the effective thermal conductivity of silica/clay mineral nanocomposite aerogels. Int. J. Heat Mass Transf. 2019, 136, 899–910. [Google Scholar] [CrossRef]
- Dai, Y.-J.; Tang, Y.-Q.; Fang, W.-Z.; Zhang, H.; Tao, W.-Q. A theoretical model for the effective thermal conductivity of silica aerogel composites. Appl. Therm. Eng. 2018, 128, 1634–1645. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.; Greif, R. Geometric structure and thermal conductivity of porous medium silica aerogel. J. Heat Transf. 1995, 117, 1055–1058. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Y.; Zhang, X.; Yu, F.; Du, X. Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transf. 2011, 54, 2355–2366. [Google Scholar] [CrossRef]
- He, F.; Wang, Y.; Zheng, W.; Wu, J.-Y.; Huang, Y.-H. Effective thermal conductivity model of aerogel thermal insulation composite. Int. J. Therm. Sci. 2022, 179, 107654. [Google Scholar] [CrossRef]
- Dan, D.; Zhang, H.; Tao, W.-Q. Effective structure of aerogels and decomposed contributions of its thermal conductivity. Appl. Therm. Eng. 2014, 72, 2–9. [Google Scholar] [CrossRef]
- Liu, H.; Hu, M.; Jiao, J.; Li, Z.; Wu, X. Effective thermal conductivity modeling of hollow nanosphere packing structures. Int. J. Heat Mass Transf. 2020, 161, 120298. [Google Scholar] [CrossRef]
- Liu, H.; Hu, M.; Jiao, J.; Li, Z. Geometric optimization of aerogel composites for high temperature thermal insulation applications. J. Non-Cryst. Solids 2020, 547, 120306. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.Y.; Zhao, X.P.; Tao, W.Q. Study on Unit Cell Models and the Effective Thermal Conductivities of Silica Aerogel. J. Nanosci. Nanotechnol. 2015, 15, 3218–3223. [Google Scholar] [CrossRef]
- Pia, G.; Sanna, U. Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials. Appl. Therm. Eng. 2013, 61, 186–192. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Liu, H.; Zhao, X.-P.; Tao, W.-Q. A multi-level fractal model for the effective thermal conductivity of silica aerogel. J. Non-Cryst. Solids 2015, 430, 43–51. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Xie, X.-Q.; Gao, Y.; He, Y.-L. Theoretical modeling and experimental validation for the effective thermal conductivity of moist silica aerogel. Int. J. Heat Mass Transf. 2020, 147, 118842. [Google Scholar] [CrossRef]
- Spagnol, S.; Lartigue, B.; Trombe, A.; Gibiat, V. Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media. Europhys. Lett. (EPL) 2007, 78, 46005. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.H.; Hu, Z.J. Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity. Int. J. Heat Mass Transf. 2014, 73, 103–109. [Google Scholar] [CrossRef]
- Fang, W.-Z.; Zhang, H.; Chen, L.; Tao, W.-Q. Numerical predictions of thermal conductivities for the silica aerogel and its composites. Appl. Therm. Eng. 2017, 115, 1277–1286. [Google Scholar] [CrossRef]
- Han, Y.-F.; Liu, H.-D.; Chen, X. Numerical simulation for thermal conductivity of nanograin within three dimensions. Therm. Sci. 2018, 22, 449–457. [Google Scholar] [CrossRef]
- Kan, A.; Mao, S.; Wang, N.; Shi, B. Simulation and Experimental Study on Thermal Conductivity of Nano-Granule Porous Material Based on Lattice-Boltzmann Method. J. Therm. Sci. 2019, 30, 248–256. [Google Scholar] [CrossRef]
- Ross-Jones, J.; Gaedtke, M.; Sonnick, S.; Meier, M.; Rädle, M.; Nirschl, H.; Krause, M.J. Pore-scale conjugate heat transfer simulations using lattice Boltzmann methods for industrial applications. Appl. Therm. Eng. 2021, 182, 116073. [Google Scholar] [CrossRef]
- Cheng, L.; Yue, K.; Wang, J.; Zhang, X. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials. Meas. Sci. Technol. 2017, 28, 075002. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, K.; Tang, G. Influence of Participating Radiation on Measuring Thermal Conductivity of Translucent Thermal Insulation Materials with Hot Strip Method. J. Therm. Sci. 2021, 31, 1023–1036. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Tao, W. Effect of radiative heat transfer on determining thermal conductivity of semi-transparent materials using transient plane source method. Appl. Therm. Eng. 2017, 114, 337–345. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.X.; Wang, X.; Tang, G.H. Numerical study of the influence of thermal radiation on measuring semi-transparent thermal insulation material with hot wire method. Int. Commun. Heat Mass Transf. 2021, 121, 105120. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, W.-Z.; Li, Y.-M.; Tao, W.-Q. Experimental study of the thermal conductivity of polyurethane foams. Appl. Therm. Eng. 2017, 115, 528–538. [Google Scholar] [CrossRef]
- Abdeali, G.; Bahramian, A.R.; Abdollahi, M. Scale variation enhancement on heat transfer performance of cubic-like polymeric aerogel: With regard to structural parameters. Numer. Heat Transf. Part A Appl. 2020, 77, 853–871. [Google Scholar] [CrossRef]
- Liu, H.; Xia, X.; Ai, Q.; Xie, X.; Sun, C. Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite. Exp. Therm. Fluid Sci. 2017, 84, 67–77. [Google Scholar] [CrossRef]
- Yang, J.; Wu, H.; He, S.; Wang, M. Prediction of thermal conductivity of fiber/aerogel composites for optimal thermal insulation. J. Porous Media 2015, 18, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Bobda, F.; Claude Damfeu, J.; Ngono Mvondo, R.R.; Meukam, P.; Jannot, Y. Thermal properties measurement of two tropical wood species as a function of their water content using the parallel hot wire method. Constr. Build. Mater. 2022, 320, 125974. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, Y.; Feng, J.; Cai, H.; Feng, J.; Li, L. Thermally insulating, fiber-reinforced alumina–silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402. [Google Scholar] [CrossRef]
- Liu, R.X.; Cui, T.Y.; Zhou, C.L.; Wang, C.H.; Wang, Y.Y.; Sui, X.Y. The Preparation and Assessment of the Rigid Aerogel Insulation Composites. Key Eng. Mater. 2012, 512-515, 301–305. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; He, R.; Ma, Y.; Zhang, K.; Bai, X.; Xu, B.; Chen, Y. Integrated thermal protection system based on C/SiC composite corrugated core sandwich plane structure. Aerosp. Sci. Technol. 2019, 91, 607–616. [Google Scholar] [CrossRef]
- Lou, F.F.; Dong, S.J.; Zhao, B.H.; Qi, B. Structuure design and performance test of a high temperature rise combustor based on combustion-gag wind tunnel device. Heat Transf. Res. 2022, 53, 21–36. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, W. The design and performance of a high temperature rise combustor for wind tunnel. J. Therm. Sci. 2011, 20, 556–562. [Google Scholar] [CrossRef]
Heat Transfer Mode | Characteristic |
---|---|
Gas heat transfer mode | The pore diameter is smaller than or close to the mean free path of gas molecules, thus greatly reducing the gas thermal conductivity. |
Solid heat transfer mode | The characteristic scale of skeleton is close to the mean free path of solid phonons, thus greatly reducing the solid thermal conductivity. |
Gas-solid coupled heat transfer mode | A large number of gas molecules are gathered in the contact surface of solid particles, forming gas-solid coupling heat transfer effect. |
Radiative heat transfer mode | Aerogel has strong permeability to near-infrared radiation with wavelength of 3–8 μm at high temperature, which leads to poor shielding ability. |
The Common Methods | Disadvantages | Advantages |
---|---|---|
Decoupling method | The complex nano-porous structure of aerogel materials is ignored. | The method is simple in form and convenient in processing. |
Equivalent circuit method | For different materials, the structural model needs to be rebuilt, which is a complicated method. | This method can reflect the influence of material structure and physical parameters on thermal conductivity. |
Numerical simulation | The calculation method is complicated and only discrete numerical results can be obtained. | The method is accurate enough to take into account the influence of various factors on heat transfer. |
The Test Methods | Disadvantages | Advantages | |
---|---|---|---|
Heat conduction heating method | Steady state method | The test time is long and the test temperature is limited. | The test result is accurate. |
Unsteady state method | The test results are inaccurate and the test temperature is limited | The test time is short. | |
Infrared radiation heating method | This method can be used to test higher temperatures. | The involvement of infrared radiation leads to higher results. | |
Convection heating method | The cost of wind tunnel testing is higher. | The test result is accurate. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, F.; Dong, S.; Zhu, K.; Chen, X.; Ma, Y. Thermal Insulation Performance of Aerogel Nano-Porous Materials: Characterization and Test Methods. Gels 2023, 9, 220. https://doi.org/10.3390/gels9030220
Lou F, Dong S, Zhu K, Chen X, Ma Y. Thermal Insulation Performance of Aerogel Nano-Porous Materials: Characterization and Test Methods. Gels. 2023; 9(3):220. https://doi.org/10.3390/gels9030220
Chicago/Turabian StyleLou, Fengfei, Sujun Dong, Keyong Zhu, Xiaona Chen, and Yinwei Ma. 2023. "Thermal Insulation Performance of Aerogel Nano-Porous Materials: Characterization and Test Methods" Gels 9, no. 3: 220. https://doi.org/10.3390/gels9030220
APA StyleLou, F., Dong, S., Zhu, K., Chen, X., & Ma, Y. (2023). Thermal Insulation Performance of Aerogel Nano-Porous Materials: Characterization and Test Methods. Gels, 9(3), 220. https://doi.org/10.3390/gels9030220