Evaluation of Low-Toxic Hybrid Sol-Gel Coatings with Organic pH-Sensitive Inhibitors for Corrosion Protection of AA2024 Aluminium Alloy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coatings Characterisation
2.2. Weathering Test
2.3. Optical Microscopy Characterisation
2.4. Weight Variation
2.5. Surface Characterisation by SEM
3. Conclusions
4. Materials and Methods
4.1. Aluminium Alloys
4.2. Sol-Gel Coatings
4.3. Corrosion Test Solution
4.4. Characterisation Techniques
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, J.R. (Ed.) Corrosion: Understanding the Basics; Chapter 1: “The Effects and Economical Impact of Corrosion”; ASM International: Almere, The Netherlands, 2000. [Google Scholar]
- Zhang, C.; Xue, J.-L.; Liu, X.; Li, X.; Zhu, J.; Liu, Q.-C.; Qian, Y. Production of aluminium alloys in electrolysis cells based on Hall-Héroult process: A review. Chin. J. Eng. 2019, 41, 835–846. [Google Scholar] [CrossRef]
- Luo, A.; Sachdev, A.; Apelian, A.K. Alloy development and process innovations for light metals casting. J. Mater. Process. Technol. 2022, 306, 117606. [Google Scholar] [CrossRef]
- Tonelli, L.; Laghi, V.; Palermo, M. AA5083 (Al–Mg) plates produced by wire-and-arc additive manufacturing: Effect of specimen orientation on microstructure and tensile properties. Prog. Addit. Manuf. 2021, 6, 479–494. [Google Scholar] [CrossRef]
- Jurczak, W.; Trzepieciński, T.; Kubit, A.; Bochnowski, W. Static and dynamic properties of al-mg alloys subjected to hydrostatic extrusion. Materials 2022, 15, 1066. [Google Scholar] [CrossRef] [PubMed]
- Liew, Y.; Wijesinghe, S.; Blackwood, D.J. Investigation of the electrochemical Breakdown Response in Sensitised AA5083 Aluminium Alloy. Sustainability 2021, 13, 7342. [Google Scholar] [CrossRef]
- Zhang, H.; Nan, Y.; Guo, C.; Cui, J. Age hardening and intergranular corrosion behavior of new type al-4.5Mg-0.6Zn-0.5Cu-XAg(wt%) alloy. J. Alloys Compd. 2022, 16, 910. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, X.; Luan, G. Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys. Mater. Sci. Eng. A 2006, 418, 155–160. [Google Scholar] [CrossRef]
- Dobrotă, D.; Racz, S.G.; Oleksik, M.; Rotaru, I.; Tomescu, M.; Simion, C.M. Smart Cutting Tools Used in the Processing of Aluminum Alloys. Sensors 2022, 22, 28. [Google Scholar] [CrossRef]
- Mu, D.K.Q.; Jiang, Z.H.; Zhang, Z. Microstructural evolution, precipitation and mechanical properties of ultrafine-grained and coarse-grained 2024 aluminum alloys fabricated by powder metallurgy. J. Mater. Res. 2022, 37, 692–704. [Google Scholar] [CrossRef]
- Mansurov, Y.N.; Rakhmonov, J.U.; Letyagin, N.V.; Finogeyev, A.S. Influence of impurity elements on the casting properties of al-mg based alloys. Non-Ferr. Met. 2018, 44, 24–29. [Google Scholar] [CrossRef]
- Panda, S.K.; Choudhury, S. Chromium stress in plants. Braz. J. Plant Physiol. 2005, 17, 95–102. [Google Scholar] [CrossRef]
- Twite, R.L.; Bierwagen, G.P. Review of Alternatives to Chromate for Corrosion Protection of Aluminum Aerospace Alloys. Prog. Org. Coat. 1998, 33, 91–100. [Google Scholar] [CrossRef]
- Rincón, R.; Andrés, I.; García Vergara, S.J.; Skeldon, P. Estudio de películas anódicas de aluminio formadas en ácido crómico por espectroscopía de impedancia electroquímica. Rev. ION 2012, 25, 45–51. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-100X2012000300007&lng=en&tlng=es (accessed on 23 November 2011).
- Nadimi, M.; Dehghanian, C.; Etemadmoghadam, A. Influence of SiO2 nanoparticles incorporating into ceramic coatings generated by PEO on aluminium alloy: Morphology, adhesion, corrosion, and wear resistance. Mater. Today Commun. 2022, 31, 103587. [Google Scholar] [CrossRef]
- Guo, Y.; Rogov, A.; Hird, A.; Mingo, B.; Matthews, A.; Yerokhin, A. Plasma electrolytic oxidation of magnesium by sawtooth pulse current. Surf. Coat. Technol. 2022, 429, 127938. [Google Scholar] [CrossRef]
- Javidi, M.; Fadaee, H. Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation on microstructure and wear behavior. Appl. Surf. Sci. 2013, 286, 212–219. [Google Scholar] [CrossRef]
- Horváth, M.; Sinkó, K. Hieratical porous SiO2 cryogel via sol-gel process. Gels 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Mauri, E.; Giannitelli, S.M.; Trombetta, M.; Rainer, A. Synthesis of nanogels: Current trends and future outlook. Gels 2021, 7, 36. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, L.; López Sánchez, J.; Serrano, A.; Rodríguez de la Fuente, O.; Galván, J.C.; Carmona, N. Hybrid sol-gel coatings doped with non-toxic corrosion protection on AZ61 magnesium alloy. Gels 2022, 8, 34. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Sopchenski Santos, L.; Vitry, V.; Paint, Y.; Olivier, M. Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating. Surf. Coat. Technol. 2022, 434, 128168. [Google Scholar] [CrossRef]
- Lakshmi, R.V.; Aruna, S.T.; Sampath, S. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating. Appl. Surf. Sci. 2017, 393, 397–404. [Google Scholar] [CrossRef]
- Carbonell, D.J.; García Casas, A.; Izquierdo, J.; Souto, R.M.; Galván, J.C.; Jiménez-Morales, A. Scanning electrochemical microscopy characterization of sol-gel coatings applied on AA2024-T3 substrate for corrosion protection. Corros. Sci. 2016, 111, 625–636. [Google Scholar] [CrossRef]
- Abuín, M.; Serrano, A.; Llopis, J.; García, M.A.; Carmona, N. Silica doped with lanthanum sol-gel thin films for corrosion protection. Thin Solid Films 2012, 520, 5267–5271. [Google Scholar] [CrossRef]
- Barranco, V.; Carmona, N.; Galván, J.C.; Grobelny, M.; Kwiatkowski, L.; Villegas, M.A. Electrochemical study of tailored sol-gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog. Org. Coat. 2010, 68, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Jafarzadeh, S.; Claesson, P.M.; Sundell, P.E.; Tyrode, E.; Pan, J. Active corrosion protection by conductive composites of polyaniline in a UV-cured polyester acrylate coating. Prog. Org. Coat. 2016, 90, 154–162. [Google Scholar] [CrossRef]
- Bazlia, L.; Yusuf, M.; Farahani, A.; Kiamarzi, M.; Seyedhosseini, Z.; Nezhadmansari, M.; Aliasghari, M.; Iranpoor, M. Application of composite conducting polymers for improving the corrosion behavior of various substrates: Review. J. Compos. Compd. 2020, 2, 228–240. [Google Scholar] [CrossRef]
- Siva, T.; Ramadoss, A.; Sathiyanarayanan, S. Emerging Action of Corrosion Prevention Based on Sustained Self-healing Coatings. Surf. Interfaces 2021, 26, 101440. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Liu, Z.; Peng, W.X.; Yoysefi, N. Amino acid and TiO2 nanoparticles mixture inserted into sol-gel coatings: An efficient corrosion protection system for AZ91 magnesium alloy. Prog. Org. Coat. 2019, 136, 105296. [Google Scholar] [CrossRef]
- Borisova, D.; Möhwald, H.; Shchukin, D.G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 2011, 5, 1939–1946. [Google Scholar] [CrossRef]
- Liu, J.; Lou, Y.; Zhang, C.; Yin, S.; Li, H.; Sun, D.; Sun, X. Improved corrosion resistance and antibacterial properties of composite arch-wires by N-doped TiO2 coating. RSC Adv. 2017, 7, 43938–43949. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Liu, J.; Li, Y.; Li, S.; Yu, M. Enhancing corrosion protection properties of sol-gel coating by pH-responsive amino-silane functionalized graphene oxide-mesoporous silica nanosheets. Prog. Org. Coat. 2019, 135, 228–239. [Google Scholar] [CrossRef]
- Maeztu, J.D.; Rivero, P.J.; Berlanga, C.; Bastidas, D.M.; Palacio, J.F.; Rodríguez, R. Effect of Graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nanocoating for the design of corrosion resistant and hydrophobic surfaces. Appl. Surf. Sci. 2017, 419, 138–149. [Google Scholar] [CrossRef]
- Saurbier, K.; Mendorf, V.; Schultze, J.W.; Geke, J.; Penninger, J.; Roβmaier, H. Toluylalanine as an inhibitor of atmospheric corrosion. Corros. Sci. 1992, 33, 1351–1359. [Google Scholar] [CrossRef]
- Vuorinen, E.; Ngobeni, P.; Van der Klashorst, G.H.; Skinner, W.; de Wet, E.; Ernst, W.S. Derivatives of cyclobexylamine and morpholine as volatile corrosion inbibitors. Br. Corros. J. 1994, 29, 120–121. [Google Scholar] [CrossRef]
- Hernández, L.; Veleva, L.; García-Galván, F.; Galván, J.C. Effect of ZrO2 and L-cys nanoparticles as dopants in sol-gel of mesoporous silica coating for corrosion protection of AZ61 magnesium alloy. Revista De Metalurgia 2019, 55, e155. [Google Scholar] [CrossRef]
- Derong, L.; Lijuan, X.; Wen, Q.; Douglas, A.; Zhijun, W.; Hong, C.; Zhang, Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 2022, 281, 119080. [Google Scholar] [CrossRef]
- Oguzie, E.E. Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye. Mater. Lett. 2005, 59, 1076–1079. [Google Scholar] [CrossRef]
- Montero, E.F.; García, M.A.; Villegas Broncano, M.A.; Llopis, J. Estudio de las propiedades ópticas de recubrimientos Sol-Gel dopados con fluoresceína en función de la concentración y del pH. Boletín Soc. Española Cerámica Vidr. 2004, 43, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Brinker, C.J.; Shcherer, G.W. The Physics and Chemistry of Sol-Gel Processing; Academic Press Ltd.: Cambridge, MA, USA, 1990. [Google Scholar]
- Pogrebnjak, A.D.; Webster, R.F.; Tilley, R.D.; Buranich, V.V.; Ivashchenko, V.I.; Takeda, Y.; Oyoshi, K.; Sakenova, R.; Piotrowska, K.; Zukowski, P.; et al. Formation of Si-Rich Interfaces by Radiation-Induced Diffusion and Microsegregation in CrN/ZrN Nanolayer Coating. ACS Appl. Mater. Interfaces 2021, 13, 16928–16938. [Google Scholar] [CrossRef]
- Xu, X.; Su, F.; Li, Z. Tribological properties of nanostructured TiAlN/W2N multilayer coating produced by PVD. Wear 2019, 430–431, 67–75. [Google Scholar] [CrossRef]
- Palanisamy, G. Corrosion Inhibitors; Ambrish, S., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- ASTM Standard G31-72; Standard Practice for Laboratory Immersion Corrosion Testing of Metals (Reapproved 1990); Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 1990.
- Galván, J.C.; Larrea, M.T.; Braceras, I.; Multigner, M.; González-Carrasco, J.L. In vitro corrosion behaviour of surgical 316LVM stainless steel modified by Si+ ion implantation—An electrochemical impedance spectroscopy study. J. Alloys Compd. 2016, 676, 414–427. [Google Scholar] [CrossRef]
- Pacha-Olivenza, M.A.; Gallardo-Moreno, A.M.; Vadillo-Rodríguez, V.; González-Martín, M.L.; Pérez-Giraldo, C.; Galván, J.C. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Sol-Gel Coating | Corrosion Inhibitor Added | Corrosion Test Performed |
---|---|---|---|
AL | NO | NO | NO |
REF | NO | NO | YES |
B | YES | NO | YES |
CIS | YES | L-cysteine | YES |
CUR | YES | Curcumin | YES |
DY | YES | Dimethyl Yellow | YES |
CR | YES | Chlorophenol Red | YES |
MB | YES | Methylene Blue | YES |
CV | YES | Crystal Violet | YES |
Sample | B | CIS | CUR | DY | CR | MB | CV |
---|---|---|---|---|---|---|---|
Thickness (nm) | (104 ± 15)·101 | (102 ± 15)·101 | 514 ± 95 | 718 ± 52 | (91 ± 10)·101 | 874 ± 56 | 719 ± 54 |
Sample | C (wt. %) | O (wt. %) | Mg (wt. %) | Al (wt. %) | Si (wt. %) | Cl (wt. %) | Cu (wt. %) |
---|---|---|---|---|---|---|---|
REF int | 6.1 ± 1.2 | 1.38 ± 0.28 | 89.1 ± 1.4 | 3.41 ± 0.81 | |||
B coat | 58.5 ± 2.9 | 23.3 ± 2.7 | - | 7.84 ± 0.69 | 6.04 ± 0.60 | 4.32 ± 0.51 | - |
CIS coat | 37.5 ± 2.6 | 42.1 ± 2.2 | - | 16.78 ± 0.91 | 1.43 ± 0.28 | 2.15 ± 0.28 | - |
CUR coat | 64.1 ± 2.1 | 19.6 ± 2.0 | - | 6.68 ± 0.46 | 5.93 ± 0.45 | 3.72 ± 0.35 | - |
DY coat | 61.7 ± 2.5 | 21.3 ± 2.4 | - | 2.91 ± 0.32 | 8.24 ± 0.62 | 5.86 ± 0.50 | - |
CR coat | 58.7 ± 2.7 | 26.7 ± 2.5 | - | 5.64 ± 0.51 | 5.23 ± 0.49 | 3.66 ± 0.42 | - |
MB coat | 63.4 ± 1.8 | 23.2 ± 1.7 | - | 5.56 ± 0.35 | 4.85 ± 0.34 | 2.93 ± 0.26 | - |
CV coat | 57.6 ± 2.5 | 25.5 ± 2.3 | - | 6.39 ± 0.51 | 6.28 ± 0.52 | 4.25 ± 0.42 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaldo Serrano, E.; López-Sánchez, J.; García-Galván, F.; Serrano, A.; Rodríguez de la Fuente, Ó.; Barranco, V.; Galván, J.C.; Carmona, N. Evaluation of Low-Toxic Hybrid Sol-Gel Coatings with Organic pH-Sensitive Inhibitors for Corrosion Protection of AA2024 Aluminium Alloy. Gels 2023, 9, 294. https://doi.org/10.3390/gels9040294
Jaldo Serrano E, López-Sánchez J, García-Galván F, Serrano A, Rodríguez de la Fuente Ó, Barranco V, Galván JC, Carmona N. Evaluation of Low-Toxic Hybrid Sol-Gel Coatings with Organic pH-Sensitive Inhibitors for Corrosion Protection of AA2024 Aluminium Alloy. Gels. 2023; 9(4):294. https://doi.org/10.3390/gels9040294
Chicago/Turabian StyleJaldo Serrano, Eva, Jesús López-Sánchez, Federico García-Galván, Aida Serrano, Óscar Rodríguez de la Fuente, Violeta Barranco, Juan Carlos Galván, and Noemí Carmona. 2023. "Evaluation of Low-Toxic Hybrid Sol-Gel Coatings with Organic pH-Sensitive Inhibitors for Corrosion Protection of AA2024 Aluminium Alloy" Gels 9, no. 4: 294. https://doi.org/10.3390/gels9040294
APA StyleJaldo Serrano, E., López-Sánchez, J., García-Galván, F., Serrano, A., Rodríguez de la Fuente, Ó., Barranco, V., Galván, J. C., & Carmona, N. (2023). Evaluation of Low-Toxic Hybrid Sol-Gel Coatings with Organic pH-Sensitive Inhibitors for Corrosion Protection of AA2024 Aluminium Alloy. Gels, 9(4), 294. https://doi.org/10.3390/gels9040294