Injectable Hydrogels Based on Cyclodextrin/Cholesterol Inclusion Complexation and Loaded with 5-Fluorouracil/Methotrexate for Breast Cancer Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Polymers Utilized for Hydrogels Formation
2.2. Hydrogels’ Preparation and Drug Loading
2.3. Characterization of the Prepared Hydrogels
- Visual appearance and pH of the prepared hydrogels
- Rheological properties
- SEM Morphological Studies
2.4. The In Vitro Release Studies
2.5. Kinetic Model Studies
2.6. Syringeability and Injectability
2.7. In Vitro Antitumor Activity and Cell Viability Studies
2.8. Clinical Signs and Histopathological Appraisals
2.9. Relative Tumor Volume Studies
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Synthesis of the Host Polymers
4.2.2. Synthesis of the Polymerized Guest Molecules
4.2.3. Hydrogels’ Preparation
4.2.4. Characterization of the Prepared Hydrogels
- Visual appearance and pH of the prepared hydrogel
- Rheological studies
- SEM studies
4.2.5. In Vitro 5-FU/MTX Mixture-Loaded Hydrogels Release Study
4.2.6. Kinetic Model Studies
Model | Model | |
---|---|---|
First order | (1) | |
Zero-order | (2) | |
Diffusion model (Higuchi) | (3) | |
Korsmeyer–Peppas model | (4) |
4.2.7. Syringeability and Injectability
4.3. Ex Vivo and In Vivo Studies
4.3.1. Cell Viability Studies
4.3.2. Animal Treatment
4.3.3. Tumor Growth Measurements
4.3.4. Histopathological Appraisals and Traits
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, K.; Xue, B.; Jia, Y.; Yuan, L.; Han, R.; Yang, F.; Peng, J.; Qian, Z. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Res. 2019, 12, 1389–1399. [Google Scholar] [CrossRef]
- Tian, R.; Chen, J.; Niu, R. The development of low-molecular-weight hydrogels for applications in cancer therapy. Nanoscale 2014, 6, 3474–3482. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today 2016, 21, 1835–1849. [Google Scholar] [CrossRef]
- Koopmans, C.; Ritter, H. Formation of physical hydrogels via host-guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules 2008, 41, 7418–7422. [Google Scholar] [CrossRef]
- Osman, S.K.; Brandl, F.P.; Zayed, G.M.; Teßmar, J.K.; Göpferich, A.M. Cyclodextrin based hydrogels: Inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer 2011, 52, 4806–4812. [Google Scholar] [CrossRef]
- Gref, R.; Amiel, C.; Molinard, K.; Daoud-Mahammed, S.; Sébille, B.; Gillet, B.; Beloeil, J.C.; Ringard, C.; Rosilio, V.; Poupaert, J.; et al. New self-assembled nano gels based on host-guest interactions: Characterization and drug loading. J. Control Release 2006, 111, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Almawash, S.; El Hamd, M.A.; Osman, S.K. Polymerized β-cyclodextrin-based injectable hydrogel for sustained release of 5-fluorouracil/methotrexate mixture in breast cancer management: In vitro and in vivo analytical validations. Pharmaceutics 2022, 14, 817. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Abbas, Z.; Rehman, S. An Overview of Cancer Treatment Modalities. Neoplasm 2018, 1, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, B.L.; Judson, I. Surgery and imatinib in the management of GIST: Emerging approaches to adjuvant and neoadjuvant therapy. Ann. Surg. Oncol. 2004, 11, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Chu, E.; DeVita, V.T. Physicians’ Cancer Chemotherapy Drug Manual 2019; Jones & Bartlett Learning: Burlington, MA, USA, 2018. [Google Scholar]
- Pinedo, H.M.; Peters, G.F. Fluorouracil: Biochemistry and pharmacology. J. Clin. Oncol. 1988, 6, 1653–1664. [Google Scholar] [CrossRef] [Green Version]
- Diasio, R.B.; Harris, B.E. Clinical Pharmacology of 5-Fluorouracil. Clin. Pharmacokinet. 1989, 16, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Angeli, C.D.; Valenti, M.; de Belvis, V.; Boccato, P. Treatment of conjunctival squamous cell carcinoma with photodynamic therapy. Br. J. Ophthalmol. 2000, 84, 268–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug-resistant tumors. Drug Resist. Updates 2020, 50, 100682. [Google Scholar] [CrossRef]
- Saraswathy, M.; Gong, S. Different strategies to overcome multidrug resistance in cancer. Biotechnol. Adv. 2013, 31, 1397–1407. [Google Scholar] [CrossRef]
- Soletti, R.C.; De Faria, G.P.; Vernal, J.; Terenzi, H.; Anderluh, G.; Borges, H.L.; Moura-Neto, V.; Gabilan, N.H. Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells. Anticancer. Drugs 2008, 19, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Ta, H.T.; Dass, C.R.; Dunstan, D.E. Injectable chitosan hydrogels for localized cancer therapy. J. Control Release 2008, 126, 205–216. [Google Scholar] [CrossRef]
- Langer, R. New methods of drug delivery. Science 1990, 249, 1527–1533. [Google Scholar] [CrossRef]
- Cattel, L.; Ceruti, M.; Dosio, F. From conventional to stealth liposomes a new frontier in cancer chemotherapy. Tumori 2003, 89, 237–249. [Google Scholar] [CrossRef]
- Dave, K.; Alsharif, F.M.; Islam, S.; Dwivedi, C.; Perumal, O. Chemoprevention of breast cancer by transdermal delivery of α-Santalol through breast skin and mammary papilla (nipple). Pharm. Res. 2017, 34, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782. [Google Scholar] [CrossRef]
- Orive, G.; Hernández, R.M.; Gascón, A.R.; Pedraz, J.L. Micro and nano drug delivery systems in cancer therapy. Cancer Ther. 2005, 3, 131–138. [Google Scholar]
- Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med. 2009, 234, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Luo, Q.; Wang, Y.; Li, X.; Shen, Z.; Zhu, W. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chem. Commun. 2015, 51, 14644–14647. [Google Scholar] [CrossRef]
- Lin, T.; Wang, W.; Zeng, X.; Lu, Y.; Shih, P. Preparation, structural characterization of anti-cancer drugs-mediated self-assembly from the pluronic copolymers through synchrotron SAXS investigation. Materials 2022, 15, 5387. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.F.; Huang, Y.J.; Liu, Y.J.; Peng, C.M.; Juan, C.J.; Yeh, S.H.; Chou, R.H. 3D-printed surgical wound dressing for prolonged 5-fluorouracil delivery from pluronic blending composites. Mater. Today Commun. 2022, 33, 104284. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Mohammed, A.M.; Saleem, I.; Alsharidah, M.; Al Rugaie, O.; Ahmed, F.; Osman, S.K. Smart injectable chitosan hydrogels loaded with 5-Fluorouracil for the treatment of breast cancer. Pharmaceutics 2022, 14, 661. [Google Scholar] [CrossRef]
- Bibby, D.C.; Davies, N.M.; Tucker, I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm. 2000, 197, 1–11. [Google Scholar] [CrossRef]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Eslahi, N.; Abdorahim, M.; Simchi, A.A. Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions. Biomacromolecules 2016, 17, 3441–3463. [Google Scholar] [CrossRef]
- Kost, B.; Brzezinski, M.; Socka, M.; Basko, M.; Biela, T. Biocompatible polymers combined with cyclodextrins: Fascinating materials for drug delivery applications. Molecules 2020, 25, 3404. [Google Scholar] [CrossRef]
- Osman, S.K.; Soliman, G.M.; Abd El Rasoul, S. Physically cross-linked hydrogels of beta-cyclodextrin polymer and poly(ethylene glycol)-cholesterol as delivery systems for macromolecules and small drug molecules. Curr. Drug Deliv. 2015, 12, 415–424. [Google Scholar] [CrossRef]
- Choi, S.G.; Lee, S.E.; Kang, B.S.; Ng, C.L.; Davaa, E.; Park, J.S. Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-β-cyclodextrin for buccal delivery. PLoS ONE 2014, 9, e109090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tronci, G.; Ajiro, H.; Russell, S.J.; Wood, D.J.; Akashi, M. Tunable drug-loading capability of chitosan hydrogels with varied network architectures. Acta Biomater. 2014, 10, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Peng, L.; Xin, Y.; Yan, Q.; Yuan, J. Stimuli-responsive polymer networks with β-cyclodextrin and ferrocene reversible linkage based on linker chemistry. Macromol. Symp. 2013, 329, 66–69. [Google Scholar] [CrossRef]
- Qi, X.; Wei, W.; Li, J.; Zuo, G.; Pan, X.; Su, T.; Zhang, J.; Dong, W. Salecan-based pH-sensitive hydrogels for insulin delivery. Mol. Pharm. 2017, 14, 431–440. [Google Scholar] [CrossRef]
- Wei, W.; Qi, X.; Liu, Y.; Li, J.; Hu, X.; Zuo, G.; Zhang, J.; Dong, W. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on sale can and poly(N,N-diethylacrylamide-co-methacrylic acid). Colloids Surf. B Biointerfaces 2015, 136, 1182–1192. [Google Scholar] [CrossRef]
- Wei, W.; Qi, X.; Li, J.; Zuo, G.; Sheng, W.; Zhang, J.; Dong, W. Smart macroporous salecan/Poly(N,N-diethylacrylamide) semi-IPN hydrogel for anti-inflammatory drug delivery. ACS Biomater. Sci. Eng. 2016, 2, 1386–1394. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Osman, S.K.; Saleh, K.I.; Samy, A.M. In vitro release of 5-fluorouracil and methotrexate from different thermosensitive chitosan hydrogel systems. AAPS PharmSciTech 2020, 21, 131. [Google Scholar] [CrossRef]
- Waham, A.H.; Laftah, S.; Ibrahim, A.N. Polymer hydrogels: A review. Polym. Plast. Technol. Eng. 2011, 50, 1475–1486. [Google Scholar]
- Kasinski, A.; Zielinska-Pisklak, M.; Oledzka, E.; Nałecz-Jawecki, G.; Drobniewska, A.; Sobczak, M. Hydrogels based on poly (ether-ester)s as highly controlled 5-Fluorouracil delivery systems-synthesis and characterization. Materials 2021, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Cadman, E.; Heimer, R.; Davis, L. Enhanced 5-fluorouracil nucleotide formation after methotrexate administration: Explanation for drug Synergism. Sci. New Ser. 1979, 205, 1135–1137. [Google Scholar] [CrossRef] [PubMed]
- Varshosaz, J.; Tabbakhian, M.; Salmani, Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. Open Drug Deliv. J. 2008, 2, 61–70. [Google Scholar] [CrossRef]
- Auda, S.H.; El-Rasoul, S.A.; Ahmed, M.M.; Osman, S.K.; El-Badry, M. In-vitro release and in-vivo performance of tolmetin from different topical gel formulations. J. Pharm. Investig. 2015, 45, 311–317. [Google Scholar] [CrossRef]
- Lin, T.F.; Yeh, S.H. Thermosensitive interfacial migration of 5-fu in the microenvironment of pluronic block copolymers. Polymers 2021, 13, 2705. [Google Scholar] [CrossRef]
- Cilurzo, F.; Selmin, F.; Minghetti, P.; Adami, M.; Bertoni, E.; Lauria, S.; Montanari, L. Injectability evaluation: An open issue. AAPS PharmSciTech 2011, 12, 604–609. [Google Scholar] [CrossRef]
- Dalwadi, C.; Patel, G. Thermosensitive nanohydrogel of 5-fluorouracil for head and neck cancer: Preparation, characterization and cytotoxicity assay. Int. J. Nanomed. 2018, 13, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, A.; Farooq, M.A.; Parveen, A. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier. ACS Omega 2020, 5, 20450–20460. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, F.; Li, Y.; Yang, X.; Huang, J.; Lv, T.; Zhang, Y.; Chen, J.; Chen, H.; Gao, Y.; et al. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone. Beilstein J. Nanotechnol. 2016, 7, 1861–1870. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, H.S.; Yadav, P.N. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int. J. Biomater. 2018, 2018, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongondry, P.; Bonnans-Plaisance, C.; Jean, M.; Tassin, J.F. Mild synthesis of amino-poly (ethylene glycol)s. Application to steric stabilization of clays. Macromol. Rapid Commun. 2003, 24, 681–685. [Google Scholar] [CrossRef]
- Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 2007, 107, 3088–3116. [Google Scholar] [CrossRef] [PubMed]
- Sandier, A.; Brown, W.; Mays, H.; Amiel, C. Interaction between an adamantane end-capped poly(ethylene oxide) and a β-cyclodextrin polymer. Langmuir 2000, 16, 1634–1642. [Google Scholar] [CrossRef]
- Singh, V.K.; Anis, A.; Banerjee, I.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Mater. Sci. Eng. C 2014, 44, 151–158. [Google Scholar] [CrossRef]
- Lee, J.H.; Um, C.M.; Lee, I. bog Rheological properties of resin composites according to variations in monomer and filler composition. Dent. Mater. 2006, 22, 515–526. [Google Scholar] [CrossRef]
- Tibbetts, G.G. Growing carbon fibers with a linearly increasing temperature sweep: Experiments and modeling. Carbon N. Y. 1992, 30, 399–406. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Song, J.-Y.; Lee, E.-J.; Park, S.-K. Rheological properties and microstructures of Carbopol gel network system. Colloid Polym. Sci. 2003, 281, 614–623. [Google Scholar] [CrossRef]
- Adams, T.N.G.; Leonard, K.M.; Minerick, A.R. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells. Biomicrofluidics 2013, 7, 064114. [Google Scholar] [CrossRef] [Green Version]
- Kohnen, T.; Magdowski, G.; Koch, D.D. Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses. J. Cataract Refract. Surg. 1996, 22, 1342–1350. [Google Scholar] [CrossRef]
- Kim, S.W.; Bae, Y.H.; Okano, T. Hydrogels: Swelling, drug loading, and release. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 1992, 9, 283–290. [Google Scholar] [CrossRef]
- Khodaverdi, E.; Tafaghodi, M.; Ganji, F.; Abnoos, K.; Naghizadeh, H. In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 2012, 13, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Burnham, K.P. Model Selection and Multimodel Inference. In A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2003; ISBN 0387953647. [Google Scholar]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. Res. 2010, 67, 217–223. [Google Scholar]
- Higuchi, W.I. Diffusional models useful in biopharmaceutics drug release rate processes. Pharm. Sci. 1967, 56, 315–324. [Google Scholar] [CrossRef]
- Singhvi, G.; Singh, M. Review: In vitro drug release characterization models. Int. J. Pharm. Stud. Res. 2011, 2, 77–84. [Google Scholar]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef]
- Di Martino, A.; Kucharczyk, P.; Capakova, Z.; Humpolicek, P.; Sedlarik, V. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil. Int. J. Biol. Macromol. 2017, 102, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Arregui, J.R.; Kovvasu, S.P.; Betageri, G.V. Daptomycin proliposomes for oral delivery: Formulation, characterization, and in vivo pharmacokinetics. AAPS PharmSciTech 2018, 19, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Ige, S.F.; Adeniyi, M.J.; Joanna, A.O.; Oluwaseyi, D.A. Allium cepa juice prevented oxidative stress-mediated metabolic disorder following chronic lead acetate exposure in male rats. Albanian J. Med. Heal. Sci. 2019, 50, 1–11. [Google Scholar]
- Abba, M.C.; Zhong, Y.; Lee, J.; Kil, H.; Lu, Y.; Takata, Y.; Simper, M.S.; Gaddis, S.; Shen, J.; Marcelo Aldaz, C. DMBA induced mouse mammary tumors display high incidence of activating Pik3caH1047 and loss of function Pten mutations. Oncotarget 2016, 7, 64289–64299. [Google Scholar] [CrossRef] [Green Version]
- Yun, Q.; Wang, S.S.; Xu, S.; Yang, J.P.; Fan, J.; Yang, L.L.; Chen, Y.; Fu, S.Z.; Wu, J.B. Use of 5-Fluorouracil loaded micelles and cisplatin in thermosensitive chitosan hydrogel as an efficient therapy against colorectal peritoneal carcinomatosis. Macromol. Biosci. 2017, 17, 1600262. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Cai, Y.; Yuan, M.; Ma, L.; Qiu, M.; Su, J. Development of a 5-fluorouracil-loaded PLGA microsphere delivery system by a solid-in-oil-in-hydrophilic oil (S/O/hO) novel method for the treatment of tumors. Oncol. Rep. 2014, 32, 2405–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsharif, F.M.; Dave, K.; Samy, A.M.; Saleh, K.I.; Amin, M.A.; Perumal, O. Influence of hydroalcoholic vehicle on in vitro transport of 4-hydroxy tamoxifen through the mammary papilla (Nipple). AAPS PharmSciTech 2017, 18, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, S.K.; Layton, C.; Bancroft, J.D. (Eds.) . Bancroft’s Theory and Practice of Histological Techniques E-Book, 7th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Dytham, C. Choosíng and Using Statístícs, 3rd ed.; Blackwell Science; Wiley-Blackwell: Hoboken, NJ, USA, 2011; ISBN 9781405198387. [Google Scholar]
Polymer | DS (%) | Yield (%) | MW (kDa) |
---|---|---|---|
8armPEG20-chol | 75 | 80–90 | 22.82 |
8armPEG20-CD | 95 | 75–80 | 28.62 |
8armPEG20k-Ad | 97 | 85–95 | 22.84 |
pβ-CD | 65 | 60–62 | 96.00 |
Code | Drug Content | pH | Rheological Properties | |||||
---|---|---|---|---|---|---|---|---|
Tgel (°C) | Cross-Over (Hz) | Stability (μ.N.Torque) | Viscosity (Pa) | Gel Strength (G*) (Pa) | ||||
5-FU | MTX | |||||||
A | 101 ± 3.1 | 101 ± 3.1 | 7.2 ± 0.2 | 42 | 2 ± 0.2 | 100 ± 3.2 | 2500 ± 100.2 | 3013 ± 35 |
B | 101 ± 2.5 | 100 ± 1.5 | 7.2 ± 0.1 | 107 ± 4.2 | 92 ± 4.2 | 95 ± 12 | ||
C | 101 ± 2.8 | 101 ± 2.8 | 7.4 ± 0.1 | 69 | 0.1 ± 0.03 | 1258 ± 30.2 | 6940 ± 70.2 | 6950 ± 84 |
5-FU | MTX | ||||
---|---|---|---|---|---|
Formula A | Formula C | Formula A | Formula C | ||
Zero-order | R | 0.865 | 0.948 | 0.955 | 0.969 |
Slope | 32.14 | 12.38 | 9.657 | 15.28 | |
First order | R | 0.853 | 0.963 | 0.918 | 0.974 |
Slope | 0.136 | 0.233 | 0.187 | 0.504 | |
Higuchi diffusion | R | 0.989 | 0.923 | 0.996 | 0.786 |
Slope | 25.262 | 36.78 | 38.474 | 45.73 | |
Kors.–Peppas | R | 0.903 | 0.902 | 0.985 | 0.827 |
N | 0.501 | 0.835 | 0.556 | 0.796 | |
Best fitted model | Higuchi | Zero | Higuchi | Zero |
Code | Composition | Concentration (μg/mL) | ||||
---|---|---|---|---|---|---|
0 | 200 | 400 | 600 | 800 | ||
G1 | Untreated group | 99.4 ± 2.2 | ||||
G2 | 5-FU saline solution | 99.5 ± 1.2 | 45.4 ± 3.2 | 22.8 ± 3.2 | 6.4 ± 1.2 | |
G3 | 5-FU/MTX saline solution | 65.4 ± 2.2 | 25.6 ± 2.6 | 16.4 ± 1.8 | 4.5 ± 1.6 | |
G4 | 5-FU/MTX-loaded gel A | 41.3 ± 3.1 | 30.7 ± 4.2 | 20.6 ± 4.1 | 9.6 ± 3.2 | |
G5 | 5-FU/MTX-loaded gel B | 50.4 ± 3.2 | 30.3 ± 3.9 | 23.7 ± 3.2 | 12.7 ± 4.1 | |
G6 | 5-FU/MTX-loaded gel C | 48.6 ± 3.0 | 29.2 ± 2.5 | 24.3 ± 2.4 | 13.6 ± 3.3 |
Code | Composition | Cell Viability (%)/Incubation Period | ||
---|---|---|---|---|
24 h | 48 h | 72 h | ||
G1 | Untreated group | 99.5 ± 1.2 | 100 ± 1.5 | 99.3 ± 1.1 |
G2 | 5-FU saline solution | 65.4 ± 2.2 | 45.5 ± 1.6 | 31.4 ± 1.1 |
G3 | 5-FU/MTX saline solution | 41.3 ± 3.1 | 24.2 ± 1.4 | 22.3 ± 1.2 |
G4 | 5-FU/MTX-loaded gel A | 50.4 ± 3.2 | 21.3 ± 2.2 | 10.5 ± 1.8 |
G5 | 5-FU/MTX-loaded gel B | 48.6 ± 3.0 | 22.8 ± 1.3 | 13.2 ± 1.9 |
G6 | 5-FU/MTX-loaded gel C | 47.9 ± 3.2 | 23.5 ± 2.1 | 8.8 ± 2.2 |
Formula Code | Total Solid (%, w/v) | Polymer Composition (w/w) | |
---|---|---|---|
Host | Guest | ||
A | 30 | 8armPEG20k-CD7 | 8armPEG20k-(chol)7 |
B | 10 | pβ-CD | 8armPEG20k-(Ad)8 |
C | 10 | pβ-CD | 8armPEG20k-(chol)7 |
D | 10 | pβ-CD | 8armPEG20k-OH |
E | 10 | β-CD | 8armPEG20k-(chol)7 |
Code | Kind of Medication Which Was Received |
---|---|
Group 1 | Normal nondiseased animals (Control) |
Group 2 | Treated with plain hydrogel (Control) |
Group 3 | Treated with 5-FU (100 mg/kg) + MTX (40 mg/kg) saline solution |
Group 4 | Treated with 5-FU/MTX-loaded hydrogel system (Formula A) |
Group 5 | Treated with 5-FU/MTX-loaded hydrogel system (Formula C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almawash, S.; Mohammed, A.M.; El Hamd, M.A.; Osman, S.K. Injectable Hydrogels Based on Cyclodextrin/Cholesterol Inclusion Complexation and Loaded with 5-Fluorouracil/Methotrexate for Breast Cancer Treatment. Gels 2023, 9, 326. https://doi.org/10.3390/gels9040326
Almawash S, Mohammed AM, El Hamd MA, Osman SK. Injectable Hydrogels Based on Cyclodextrin/Cholesterol Inclusion Complexation and Loaded with 5-Fluorouracil/Methotrexate for Breast Cancer Treatment. Gels. 2023; 9(4):326. https://doi.org/10.3390/gels9040326
Chicago/Turabian StyleAlmawash, Saud, Ahmed M. Mohammed, Mohamed A. El Hamd, and Shaaban K. Osman. 2023. "Injectable Hydrogels Based on Cyclodextrin/Cholesterol Inclusion Complexation and Loaded with 5-Fluorouracil/Methotrexate for Breast Cancer Treatment" Gels 9, no. 4: 326. https://doi.org/10.3390/gels9040326
APA StyleAlmawash, S., Mohammed, A. M., El Hamd, M. A., & Osman, S. K. (2023). Injectable Hydrogels Based on Cyclodextrin/Cholesterol Inclusion Complexation and Loaded with 5-Fluorouracil/Methotrexate for Breast Cancer Treatment. Gels, 9(4), 326. https://doi.org/10.3390/gels9040326