Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Methodology
4.1. Data Collection and Pre-Treatment
4.2. Principal Component Analysis (PCA)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Environment, U.N. Global Environment Outlook 6. Available online: http://www.unep.org/resources/global-environment-outlook-6 (accessed on 8 March 2023).
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Lumami Kapepula, V.; García Alvarez, M.; Sang Sefidi, V.; Buleng Njoyim Tamungang, E.; Ndikumana, T.; Musibono, D.-D.; Van Der Bruggen, B.; Luis, P. Evaluation of Commercial Reverse Osmosis and Nanofiltration Membranes for the Removal of Heavy Metals from Surface Water in the Democratic Republic of Congo. Clean Technol. 2022, 4, 1300–1316. [Google Scholar] [CrossRef]
- Coldebella, R.; Gentil, M.; Berger, C.; Dalla Costa, H.W.; Pedrazzi, C.; Labidi, J.; Delucis, R.A.; Missio, A.L. Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva (Maclura Tinctoria) Heartwood Extract. Polymers 2021, 13, 908. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.; Ahankari, S.S. Nanocellulose-Based Aerogels for Water Purification: A Review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Growth of Bi-OBr/ZIF-67 Nanocomposites on Carbon Fiber Cloth as Filter-Membrane-Shaped Pho-tocatalyst for Degrading Pollutants in Flowing Wastewater. Adv. Fiber Mater. 2022, 4, 1620–1631. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, Y.; Xia, M.; Du, H.; Lin, Z.; Li, B.; Liu, H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers 2022, 14, 2648. [Google Scholar] [CrossRef]
- Nargatti, K.I.; Subhedar, A.R.; Ahankari, S.S.; Grace, A.N.; Dufresne, A. Nanocellulose-Based Aerogel Electrodes for Supercapacitors: A Review. Carbohydr. Polym. 2022, 297, 120039. [Google Scholar] [CrossRef]
- Hasan, M.A.; Sangashetty, R.; Esther, A.C.M.; Patil, S.B.; Sherikar, B.N.; Dey, A. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review. J. Inst. Eng. India Ser. D 2017, 98, 297–304. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Silva, R.F.; Durães, L. Advances in Carbon Nanostructure–Silica Aerogel Composites: A Review. J. Mater. Chem. A 2018, 6, 1340–1369. [Google Scholar] [CrossRef]
- Mekonnen, B.T.; Ding, W.; Liu, H.; Guo, S.; Pang, X.; Ding, Z.; Seid, M.H. Preparation of Aerogel and Its Application Progress in Coatings: A Mini Overview. J. Leather Sci. Eng. 2021, 3, 25. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, C.-H. Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning. Processes 2020, 8, 377. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-B.; Chiou, B.-S.; Wang, Y.-Z.; Schiraldi, D.A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces 2013, 5, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for Water Treatment: A Review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ha, L.Q.; Nguyen, T.D.L.; Ly, P.H.; Nguyen, D.M.; Hoang, D. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS Omega 2022, 7, 1003–1013. [Google Scholar] [CrossRef]
- Berrio, M.E.; Oñate, A.; Salas, A.; Fernández, K.; Meléndrez, M.F. Synthesis and applications of graphene oxide aerogels in bone tissue regeneration: A review. Mater. Today Chem. 2021, 20, 100422. [Google Scholar] [CrossRef]
- Fan, J.; Grande, C.D.; Rodrigues, D.F. Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environ. Sci. Nano 2017, 4, 1808–1816. [Google Scholar] [CrossRef]
- Down, M.P.; Rowley-Neale, S.J.; Smith, G.C.; Banks, C. Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy Mater. 2018, 1, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Awang, N.; Johari, A.; Radzi, A.R.M.; Yajid, M.A.M. A Review on 3D Nanomaterial: Aerogel-Derived Nanocellulose for Energy Storage. Adv. Transdiscipl. Eng. Technol. 2022, 174, 309–320. [Google Scholar]
- Alves, P.; Dias, D.A.; Pontinha, A.D.R. Silica Aerogel-Rubber Composite: A Sustainable Alternative for Buildings’ Thermal Insulation. Molecules 2022, 27, 7127. [Google Scholar] [CrossRef]
- Ren, S.; Li, J.; Huang, K.; Bai, Y.; Wang, C. Effect of composite orders of graphene oxide on thermal properties of Na2HPO4• 12H2O/expanded vermiculite composite phase change materials. J. Energy Storage 2021, 41, 102980. [Google Scholar] [CrossRef]
- Zhou, J.; Hsieh, Y.L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 2020, 68, 104305. [Google Scholar] [CrossRef] [Green Version]
- Xi, S.; Wang, L.; Shao, F.; Song, M.; Xie, H.; Yu, W. Ecofriendly chitosan-derived carbon aerogels based eutectic hydrated salts for good solar thermal energy storage and corrosion mitigation effect. Energy Build. 2022, 271, 112336. [Google Scholar] [CrossRef]
- Biru, E.I.; Necolau, M.I.; Zainea, A.; Iovu, H. Graphene Oxide–Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications. Polymers 2022, 14, 1032. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Adnan, A.; Yahya, E.B.; Olaiya, N.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.; Oyekanmi, A.; et al. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef] [PubMed]
- Lovskaya, D.; Menshutina, N.; Mochalova, M.; Nosov, A.; Grebenyuk, A. Chitosan-based aerogel particles as highly effective local hemostatic agents. production process and in vivo evaluations. Polymers 2020, 12, 2055. [Google Scholar] [CrossRef]
- Peng, L.; Zheng, Y.; Li, J.; Jin, Y.; Gao, C. Monolithic neat graphene oxide aerogel for efficient catalysis of S → O acetyl migration. ACS Catal. 2015, 5, 3387–3392. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Zhang, Y.; van Bochove, B.; Mäkilä, E.; Seppälä, J.; Xu, W.; Willför, S.; Xu, C. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep. Purif. Technol. 2020, 242, 116523. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Elabiad, M.A.; Mohamed, A.A. Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: A critical review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100719. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Li, X.; Mei, C.; Zheng, J.; E, S.; Duan, G.; Liu, K.; Jiang, S. Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels. ACS Nano 2021, 15, 20666–20677. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Beh, J.H.; Lim, T.H.; Lew, J.H.; Lai, J.C. Cellulose Nanofibril-Based Aerogel Derived from Sago Pith Waste and Its Application on Methylene Blue Removal. Int. J. Biol. Macromol. 2020, 160, 836–845. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Mäkilä, E.; Willför, S.; Xu, C. Ultralight and Porous Cellulose Nanofibers/Polyethyleneimine Composite Aerogels with Exceptional Performance for Selective Anionic Dye Adsorption. Ind. Crops Prod. 2022, 177, 114513. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.-F.; Yao, J. Construction of a Hybrid Graphene Oxide/Nanofibrillated Cellulose Aerogel Used for the Efficient Removal of Methylene Blue and Tetracycline. J. Phys. Chem. Solids 2021, 150, 109839. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Y.; Liu, H.; Du, C.; Yu, H.; Ru, J.; Zhou, Z. Effect of Surface Charge Content in the TEMPO-Oxidized Cellulose Nanofibers on Morphologies and Properties of Poly(N-Isopropylacrylamide)-Based Composite Hydrogels. Ind. Crops Prod. 2016, 92, 227–235. [Google Scholar] [CrossRef]
- Ferreira-Neto, E.P.; Ullah, S.; da Silva, T.C.A.; Domeneguetti, R.R.; Perissinotto, A.P.; de Vicente, F.S.; Rodrigues-Filho, U.P.; Ribeiro, S.J.L. Bacterial Nanocellulose/MoS2 Hybrid Aerogels as Bifunctional Adsorbent/Photocatalyst Membranes for in-Flow Water Decontamination. ACS Appl. Mater. Interfaces 2020, 12, 41627–41643. [Google Scholar] [CrossRef]
- UiO-66 Derived N-Doped Carbon Nanoparticles Coated by PANI for Simultaneous Adsorption and Reduction of Hexavalent Chromium from Waste Water—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1385894719314639?via%3Dihub (accessed on 8 March 2023).
- Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef]
- Sharma, P.R.; Sharma, S.K.; Lindström, T.; Hsiao, B.S. Nanocellulose-Enabled Membranes for Water Purification: Perspectives. Adv. Sustain. Syst. 2020, 4, 1900114. [Google Scholar] [CrossRef]
- Tang, J.; Song, Y.; Zhao, F.; Spinney, S.; da Silva Bernardes, J.; Tam, K.C. Compressible Cellulose Nanofibril (CNF) Based Aerogels Produced via a Bio-Inspired Strategy for Heavy Metal Ion and Dye Removal. Carbohydr. Polym. 2019, 208, 404–412. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Sabidi, S.; Ohno, T.; Maeda, T.; Andou, Y. Cu2O/TiO2 Decorated on Cellulose Nanofiber/Reduced Graphene Hydrogel for Enhanced Photocatalytic Activity and Its Antibacterial Applications. Chemosphere 2022, 286, 131731. [Google Scholar] [CrossRef]
- Do, N.H.N.; Truong, B.Y.; Nguyen, P.T.X.; Le, K.A.; Duong, H.M.; Le, P.K. Composite Aerogels of TEMPO-Oxidized Pineapple Leaf Pulp and Chitosan for Dyes Removal. Sep. Purif. Technol. 2022, 283, 120200. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, S.; Fan, K.; He, H.; Qin, Z. Preparation and Adsorption Properties of Green Cellulose-Based Composite Aerogel with Selective Adsorption of Methylene Blue. Polymer 2022, 258, 125320. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J.; Tian, X.; Guo, F.; Wang, C.; Zhang, J.; Jiang, M. Facile In-Situ Growth of Metal–Organic Framework Layer on Carboxylated Nanocellulose/Chitosan Aerogel Spheres and Their High-Efficient Adsorption and Catalytic Performance. Appl. Surf. Sci. 2022, 599, 153974. [Google Scholar] [CrossRef]
- Efficient Removal of Methyl Orange by Nanocomposite Aerogel of Polyethyleneimine and Β-cyclodextrin Grafted Cellulose Nanocrystals. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/app.51481 (accessed on 8 March 2023).
- Lei, C.; Wen, F.; Chen, J.; Chen, W.; Huang, Y.; Wang, B. Mussel-Inspired Synthesis of Magnetic Carboxymethyl Chitosan Aerogel for Removal Cationic and Anionic Dyes from Aqueous Solution. Polymer 2021, 213, 123316. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, N.; Hu, C.; Zhang, C.; Zhang, H.; Xing, Y. Preparation of a Novel Citric Acid-Crosslinked Zn-MOF/Chitosan Composite and Application in Adsorption of Chromium(VI) and Methyl Orange from Aqueous Solution. Carbohydr. Polym. 2021, 258, 117644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, S.; Mu, M.; Wang, L.; Fan, Y.; Liu, X. Eco-Friendly Ferrocene-Functionalized Chitosan Aerogel for Efficient Dye Degradation and Phosphate Adsorption from Wastewater. Chem. Eng. J. 2022, 439, 135605. [Google Scholar] [CrossRef]
- Shu, D.; Feng, F.; Han, H.; Ma, Z. Prominent Adsorption Performance of Amino-Functionalized Ultra-Light Graphene Aerogel for Methyl Orange and Amaranth. Chem. Eng. J. 2017, 324, 1–9. [Google Scholar] [CrossRef]
- Ding, Y.; Tian, Z.; Li, H.; Wang, X. Efficient Removal of Organic Dyes Using a Three-Dimensional Graphene Aerogel with Excellent Recycling Stability. New Carbon Mater. 2019, 34, 315–324. [Google Scholar] [CrossRef]
- A Thiourea Cross-Linked Three-Dimensional Graphene Aerogel as a Broad-Spectrum Adsorbent for Dye and Heavy Metal Ion Removal. Available online: https://pubs.rsc.org/en/content/articlelanding/2020/nj/d0nj03345f/unauth (accessed on 8 March 2023).
- Jiang, L.; Wen, Y.; Zhu, Z.; Liu, X.; Shao, W. A Double Cross-Linked Strategy to Construct Graphene Aerogels with Highly Efficient Methylene Blue Adsorption Performance. Chemosphere 2021, 265, 129169. [Google Scholar] [CrossRef]
- Tang, S.; Xia, D.; Yao, Y.; Chen, T.; Sun, J.; Yin, Y.; Shen, W.; Peng, Y. Dye Adsorption by Self-Recoverable, Adjustable Amphiphilic Graphene Aerogel. J. Colloid Interface Sci. 2019, 554, 682–691. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, X.; Huang, X.; Yang, H. Adsorption and Heterogeneous Fenton Catalytic Performance for Magnetic Fe3O4/Reduced Graphene Oxide Aerogel. J. Mater. Sci. 2020, 55, 15695–15708. [Google Scholar] [CrossRef]
- Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 304. [Google Scholar] [CrossRef]
- Joliffe, I.T.; Morgan, B.J.T. Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1992, 1, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Serneels, S.; Verdonck, T. Principal component analysis for data containing outliers and missing elements. Comput. Stat. Data Anal. 2008, 52, 1712–1727. [Google Scholar] [CrossRef]
- Younes, K.; Abdallah, M.; Hanna, E.G. The Application of Principal Components Analysis for the Comparison of Chemical and Physical Properties among Activated Carbon Models. Mater. Lett. 2022, 325, 132864. [Google Scholar] [CrossRef]
- Murshid, N.; Mouhtady, O.; Abu-samha, M.; Obeid, E.; Kharboutly, Y.; Chaouk, H.; Halwani, J.; Younes, K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022, 8, 702. [Google Scholar] [CrossRef]
- Mouhtady, O.; Obeid, E.; Abu-samha, M.; Younes, K.; Murshid, N. Evaluation of the Adsorption Efficiency of Graphene Oxide Hydrogels in Wastewater Dye Removal: Application of Principal Component Analysis. Gels 2022, 8, 447. [Google Scholar] [CrossRef]
- Younes, K.; Mouhtady, O.; Chaouk, H.; Obeid, E.; Roufayel, R.; Moghrabi, A.; Murshid, N. The Application of Principal Component Analysis (PCA) for the Optimization of the Conditions of Fabrication of Electrospun Nanofibrous Membrane for Desalination and Ion Removal. Membranes 2021, 11, 979. [Google Scholar] [CrossRef]
- Younes, K.; Laduranty, J.; Descostes, M.; Grasset, L. Molecular Biomarkers Study of an Ombrotrophic Peatland Impacted by an Anthropogenic Clay Deposit. Org. Geochem. 2017, 105, 20–32. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. Analysis of Molecular Proxies of a Peat Core by Thermally Assisted Hydrolysis and Methylation-Gas Chromatography Combined with Multivariate Analysis. J. Anal. Appl. Pyrolysis 2017, 124, 726–732. [Google Scholar] [CrossRef]
- Korichi, W.; Ibrahimi, M.; Loqman, S.; Ouhdouch, Y.; Younes, K.; Lemée, L. Assessment of Actinobacteria Use in the Elimination of Multidrug-Resistant Bacteria of Ibn Tofail Hospital Wastewater (Marrakesh, Morocco): A Chemometric Data Analysis Approach. Environ. Sci. Pollut. Res. 2021, 28, 26840–26848. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Grasset, L. The Application of DFRC Method for the Analysis of Carbohydrates in a Peat Bog: Validation and Comparison with Conventional Chemical and Thermochemical Degradation Techniques. Chem. Geol. 2020, 545, 119644. [Google Scholar] [CrossRef]
Sl. No. | Aerogel Composition | Physical/Chemical Parameters | Adsorption Parameters | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Density (mg/cm3) | Porosity (%) | BET surface area (m2/g) | Time to reach equilibrium (min) | Adsorption capacity (mg/g) | Removal Efficiency (%) | Number of reuse/regenerations | Removal efficiency (%) after Regeneration | |||
Nanocellulose (NC)-based Aerogels | ||||||||||
1 | SPCNF | 2.1 | – | – | 5 | 222.2 | 99 | – | – | [33] |
2 | CNF/PEI/ Ag NPs | 14.9 | 96.5 | 3.5 | 5 | – | 99.2 | 10 | 98 | [34] |
3 | GO/CNF | 26.4 | 98.2 | – | 20 | – | 99 | 5 | 91 | [16] |
4 | GO/CNF | 26.3 | – | 35 | 360 | 111.2 | – | 3 | 98 | [35] |
5 | GO/CNF | 2.2 | 99 | – | – | 265.6 | – | – | – | [36] |
6 | BNC/MoS2 | – | – | 137 | 120 | – | 96 | 6 | 86 | [37] |
7 | UiO-66/NC | 51 | – | 826 | 360 | 71.7 | – | 4 | 92 | [38] |
8 | BHA | 8.2 | 99.4 | 54 | 720 | 531 | – | 5 | 2 | [39] |
9 | NB/DANC/CMC | – | – | 48.6 | 40 | 29,842 | – | 10 | [40] | |
10 | PDA/CNF/PEI | 25 | 98.5 | – | 720 | 265.9 | – | 4 | 89 | [41] |
11 | Cu2O/TiO2/CNF/rGH | – | – | 16.2 | 120 | – | 85.62 | 4 | 79.5 | [42] |
12 | TEMPO-oxidized NC/CS | 8.4 | 99 | – | 360 | 136.6 | 91.8 | – | – | [43] |
13 | CMC/CNFs | 14.4 | 93 | 9.8 | 720 | 917.4 | >90 | 6 | – | [44] |
14 | MOF-199@ CNCA/CMCS | – | – | 102.6 | 60 | 1112.2 | – | – | – | [45] |
15 | CNC-PEI-CD/PAM | – | – | – | 90 | 155.9 | 95 | 3 | 85 | [46] |
Chitosan (CS)-based Aerogels | ||||||||||
1 | Fe3O4@ PDA/CMC | – | – | 106.7 | 120 | 217.4 | 93.9 | 7 | 60 | [47] |
2 | ZnBDC/CSC | – | – | 16.3 | 25 | 202 | ~88 | 5 | 84 | [48] |
3 | Fc-CS | – | – | 5 | 480 | 1141 | 92.8 | 5 | 80 | [49] |
Graphene (G)-based Aerogels | ||||||||||
1 | PFGA | 7.1 | – | – | 270 | 3059.2 | – | 4 | – | [50] |
2 | PVA/N/GA | – | – | 210.4 | 240 | 217 | 98.4 | 5 | 97.7 | [51] |
3 | TCGA | – | – | – | – | - | – | – | – | [52] |
4 | LEGA | 33.9 | – | – | 402 | 332.2 | 90.3 | 5 | 85 | [53] |
5 | GA | – | – | 109 | 15 | 76 | – | 10 | 89.5 | [54] |
6 | Fe3O4/rGO | – | – | 200.4 | 180 | 163.8 | – | 5 | 98 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 327. https://doi.org/10.3390/gels9040327
Younes K, Kharboutly Y, Antar M, Chaouk H, Obeid E, Mouhtady O, Abu-samha M, Halwani J, Murshid N. Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach. Gels. 2023; 9(4):327. https://doi.org/10.3390/gels9040327
Chicago/Turabian StyleYounes, Khaled, Yahya Kharboutly, Mayssara Antar, Hamdi Chaouk, Emil Obeid, Omar Mouhtady, Mahmoud Abu-samha, Jalal Halwani, and Nimer Murshid. 2023. "Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach" Gels 9, no. 4: 327. https://doi.org/10.3390/gels9040327
APA StyleYounes, K., Kharboutly, Y., Antar, M., Chaouk, H., Obeid, E., Mouhtady, O., Abu-samha, M., Halwani, J., & Murshid, N. (2023). Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach. Gels, 9(4), 327. https://doi.org/10.3390/gels9040327