The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Solution Ionic Strength
2.2. Effect of Water Hardness
2.3. Effect of Solution pH
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Magnetic Nanocomposite Microparticle Synthesis
4.3. Particle Characterization
4.4. PCB Binding Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Xu, M.; Chen, H.; Li, Y.; Chen, S. Globalization, Green Economy and Environmental Challenges: State of the Art Review for Practical Implications. Front. Environ. Sci. Eng. 2022, 10, 870271. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.E.; Hofstetter, T.B.; von Grunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Furth. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Laws and Executive Orders. Available online: https://www.epa.gov/laws-regulations/laws-and-executive-orders (accessed on 5 January 2023).
- Arthington, A.H.; Bhaduri, A.; Bunn, S.E.; Jackson, S.E.; Tharme, R.E.; Tickner, D.; Young, B.; Acreman, M.; Baker, N.; Capon, S.; et al. The Brisbane Declaration and Global Action Agenda on Environmental Flows. Front. Environ. Sci. Eng. 2018, 6, 45. [Google Scholar] [CrossRef]
- Fuerhacker, M. EU Water Framework Directive and Stockholm Convention: Can we reach the targets for priority substances and persistent organic pollutants? Environ. Sci. Pollut. Res. 2009, 16, S92–S97. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 46, 125912. [Google Scholar] [CrossRef]
- Rego, R.M.; Kuriya, G.; Kurkuri, M.D.; Kigga, M. MOF based engineered materials in water remediation: Recent trends. J. Hazard. Mater. 2021, 403, 123605. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
- Gomes, H.I.; Dias-Ferreira, C.; Ribeiro, A.B. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci. Total Environ. 2013, 444, 237. [Google Scholar] [CrossRef]
- Okoro, H.K.; Pandey, S.; Ogunkunle, C.O.; Ngila, C.J.; Zvinowanda, C.; Jimoh, I.; Lawal, I.A.; Orosun, M.M.; Adeniyi, A.G. Nanomaterial-based biosorbents: Adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerg. Contam. 2022, 8, 46–58. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere 2021, 263, 128005. [Google Scholar] [CrossRef]
- Tchinsa, A.; Hossain, M.F.; Wang, T.; Zhou, Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. Chemospehere 2021, 284, 131393. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, S.; Karmegam, N.; Subbaiya, R.; Devi, G.K.; Arulvel, R.; Ravindran, B.; Awasthi, M.K. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. Bioresour. Technol. 2021, 320, 124394. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pang, H.; Liu, X.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M.; Hu, B.; Yang, H.; Wang, X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation 2021, 2, 100076. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Gutierrez, A.H.; Leniz, F.C.; Wang, X.; Dziubla, T.D.; Hilt, J.Z. Effect of atom transfer radical polymerization reaction time on PCB binding capacities of Styrene-CMA/QMA Core-Shell iron oxide nanoparticles. Mat. Sci. Eng. B 2022, 277, 115577. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.; Wang, H.; Yang, H.; Wen, T.; Wang, S.; Hu, B.; Wang, X. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 2021, 792, 148546. [Google Scholar] [CrossRef]
- Tang, H.; Wang, J.; Zhang, S.; Pang, H.; Wang, X.; Chen, Z.; Li, M.; Song, G.; Qiu, M.; Yu, S. Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. J. Clean. Prod. 2021, 319, 128641. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Bhandari, R.; Weng, Y.; Stromberg, A.; Dziubla, T.D.; Hilt, J.Z. Novel magnetic core-shell nanoparticles for the removal of Polychlorinated Biphenyls from contaminated water sources. Mat. Chem. Phys. 2019, 223, 68–74. [Google Scholar] [CrossRef]
- Ncube, S.; Madikizela, L.; Cukrowska, E.; Cimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. Trends Anal. Chem. 2018, 99, 101–116. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Bhandari, R.; Weng, Y.; Stromberg, A.; Dziubla, T.D.; Hilt, J.Z. Synthesis of magnetic nanocomposite microparticles for binding of chlorinated organics in contaminated water sources. J. Appl. Polym. Sci. 2020, 137, 49109. [Google Scholar] [CrossRef] [PubMed]
- Biedrzyck, A.; Skwarek, E.; Hanna, U.M. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 2021, 291, 102401. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Bilal, M.; Qamar, S.A.; Imran, H.M.; Riasat, A.; Jahangeer, M.; Ghafoor, M.; Ali, N.; Iqbal, H.M.N. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environ. Res. 2022, 211, 113060. [Google Scholar] [CrossRef] [PubMed]
- Zango, Z.U.; Sambudi, N.S.; Jumbri, K.; Ramli, A.; Abu Bakar, N.H.H.; Saad, B.; Rozaini, M.N.H.; Isiyaka, H.A.; Osman, A.M.; Sulieman, A. An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. Water 2020, 12, 2921. [Google Scholar] [CrossRef]
- Boon, Y.H.; Zain, N.N.M.; Mohamad, S.; Osman, H.; Raoov, M. Magnetic poly(beta-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem. 2019, 278, 322–332. [Google Scholar] [CrossRef]
- Hu, A.; Yang, X.; You, Q.; Liu, Y.; Wang, Q.; Liao, G.; Wang, D. Magnetically hyper-cross-linked polymers with well-developed mesoporous—A broad-spectrum and highly efficient adsorbent for water purification. J. Mater. Sci. 2019, 54, 2712–2728. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, A.; Pang, L.; Chen, P.; Zhu, G.Y. Porphyrin-based magnetic nanocomposites for efficient extraction of polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A 2018, 1540, 1–10. [Google Scholar] [CrossRef]
- Zhou, C.G.; Gao, Q.; Wang, S.; Gong, Y.S.; Xia, K.S.; Han, B.; Li, M.; Ling, Y. Remarkable performance of magnetized chitosan-decorated lignocellulose fiber towards biosorptive removal of acidic azo colorant from aqueous environment. React. Funct. Poly. 2016, 100, 97–106. [Google Scholar] [CrossRef]
- Wang, M.; Liu, P.; Wang, Y.; Zhou, D.; Ma, C.; Zhang, D.; Zhan, J. Core-shell superparamagnetic Fe3O4@β-CD composites for host-guest adsorption of polychlorinated biphenyls (PCBs). J. Colloid Interface Sci. 2015, 447, 1–7. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Z.; Xia, J.; Zhang, X.; Dang, M. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 2012, 101, 388–395. [Google Scholar] [CrossRef]
- Borji, H.; Ayoub, G.M.; Al-Hindi, M.; Malaeb, L.; Hamdan, H.Z. Nanotechnology to remove polychlorinated byphenyls and polycyclic aromatic hydrocarbons from water: A review. Environ. Chem. Lett. 2020, 18, 729–746. [Google Scholar] [CrossRef]
- Lu, F.; Wu, M.; Lin, C.; Xie, Z. Efficient and selective solid-phase microextraction of polychlorinated biphenyls by using a three-dimensional covalent organic framework as functional coating. J. Chromatogr. A 2022, 1681, 463419. [Google Scholar] [CrossRef] [PubMed]
- Adeyinka, G.C.; Moodley, B. Kinetic and thermodynamic studies on partitioning of polychlorinated biphenyls (PCBs) between aqueous solution and modeled individual soil particle grain sizes. J. Environ. Sci. 2019, 76, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Harner, T.; Liu, L.; Zhang, Z.; Ren, N.Q.; Jia, H.; Ma, J.; Sverko, E. Polychlorinated biphenyls in global air and surface soil: Distributions, air–soil exchange, and fractionation effect. Environ. Sci. Technol. 2010, 44, 2784–2790. [Google Scholar] [CrossRef] [PubMed]
- U.S EPA. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 18 December 2022).
- USGS. Saline Water and Salinity. Available online: https://www.usgs.gov/special-topics/water-science-school/science/saline-water-and-salinity (accessed on 15 January 2023).
- Nurerk, P.; Kanatharana, P.; Bunkoed, O. Polyaniline-coated magnetite nanoparticles incorporated in alginate beads for the extraction and enrichment of polycyclic aromatic hydrocarbons in water samples. Int. J. Environ. Anal. Chem. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, D.H.; Yum, B.W.; Chang, H.W. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination. J. Hazard. Mater. 2005, 119, 195–203. [Google Scholar] [CrossRef]
- Jonker, M.T.O.; Van der Heijden, S.A.; Kotte, M.; Smeden, F. Quantifying the Effects of Temperature and Salinity on Partitioning of Hydrophobic Organic Chemicals to Silicone Rubber Passive Samplers. Environ. Sci. Technol. 2015, 49, 6791–6799. [Google Scholar] [CrossRef]
- Reitsma, P.J.; Adelman, D.; Lohmann, R. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environ. Sci. Technol. 2013, 47, 10429–10437. [Google Scholar] [CrossRef]
- Zhang, D.; Xue, L.; Zhu, Q.; Du, X. A novel fiber with phenyl-functionalized MSU (Michigan State University) coating for solid-phase microextraction combined with high performance liquid chromatography for preconcentration and determination of trace polychlorinated biphenyls in environmental water samples. Anal. Lett. 2013, 46, 2290–2301. [Google Scholar] [CrossRef]
- Perez, R.A.; Albero, B.; Tadeo, J.L.; Molero, E.; Sanchez-Brunete, C. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 1913–1924. [Google Scholar] [CrossRef]
- United States Geological Service. Hardness of Water. Available online: https://www.usgs.gov/special-topic/water-science-school/science/hardness-water (accessed on 18 December 2022).
- Water Research Center—The Ph of Water. Available online: https://www.water-research.net/index.php/ph (accessed on 18 December 2022).
- Khammar, S.; Bahrmifar, N.; Younesi, H. Optimization using the response surface methodology for adsorption of polychlorinated biphenyls (PCBs) from transformer oil by magnetic CMCD-Fe3O4@SiO2 nanoparticles. Mater. Chem. Phys. 2020, 252, 123195. [Google Scholar] [CrossRef]
- Badea, L.; Mustafa, M.; Lundstedt, S.; Tysklind, M. Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter. Sci. Tot. Environ. 2014, 499, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.R.; Mobasser, S. Adsorption of DDT and PCB by Nanomaterials from Residual Soil. PLoS ONE 2015, 10, e0144071. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Al-Abed, S.R.; Agarwal, S.; Dionysiou, D.D. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem. Mater. 2008, 44, 3649–3655. [Google Scholar] [CrossRef]
- Lv, S.; Gao, Y.; Zhao, M.; Jiang, X.; Li, X.; Yang, J.; Chen, S.; Ciu, S. Biomass-derived porous material synthesized by one-step calcination method for the magnetic solid-phase extraction of polychlorinated biphenyls in water. J. Sep. Sci. 2022, 45, 1693–1701. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Yap, P.S.; Iwuozor, K.I.; Aniagor, C.O.; Liu, T.; Dulta, K.; Iwucchukwi, G.U.; Rangabhashiyam, S. Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. Environ. Res. 2022, 212, 113123. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Chang, H.; Mao, T.; Teng, Y. Planarity effect of polychlorinated biphenyls adsorption by graphene nanomaterials: The influence of graphene characteristics, solution pH and temperature. Chem. Eng. J. 2019, 362, 160–168. [Google Scholar] [CrossRef]
- Wheeler, S.; Bloom, J.W.G. Toward a More Complete Understanding of Noncovalent Interactions Involving Aromatic Rings. J. Phys. Chem. A 2014, 118, 6133–6147. [Google Scholar] [CrossRef]
- Wheeler, S.E. Understanding Substituent Effects in Noncovalent Interactions Involving Aromatic Rings. Acc. Chem. Res. 2013, 46, 1029–1038. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Xiao, J.; Zhan, Y. Preparation of magnetic core-shell Fe3O4@polyaniline composite material and its application in adsorption and removal of tetrabromobisphenol A and decabromodiphenyl ether. Ecotoxicol. Environ. Saf. 2019, 183, 109471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels. Gels 2023, 9, 344. https://doi.org/10.3390/gels9040344
Gutierrez AM, Dziubla TD, Hilt JZ. The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels. Gels. 2023; 9(4):344. https://doi.org/10.3390/gels9040344
Chicago/Turabian StyleGutierrez, Angela M., Thomas D. Dziubla, and J. Zach Hilt. 2023. "The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels" Gels 9, no. 4: 344. https://doi.org/10.3390/gels9040344
APA StyleGutierrez, A. M., Dziubla, T. D., & Hilt, J. Z. (2023). The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels. Gels, 9(4), 344. https://doi.org/10.3390/gels9040344