Effects of Alkaline Solvent Type and pH on Solid Physical Properties of Carrageenan from Eucheuma cottonii
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Characteristics
2.1.1. Yields, pH, and Ash Content
2.1.2. Sulphate Content, Gel Strength, Viscosity, and Molecular Weight of Carrageenan
2.1.3. Swelling Capacity of Carrageenan Extracted Using Various Types of Alkaline Solvents and pH
2.1.4. FTIR Spectra of Carrageenan
2.2. Evaluation of Solid Physical Characteristics
2.2.1. Morphology
2.2.2. XRD Diffractogram of Carrageenan
2.2.3. Solid-State Physical Properties
- Density
- Solid Fraction (SF)
- Tensile strength (TS)
- Bonding index (BI)
- Brittle Fracture Index (BFI)
- Solubility
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Extraction
4.2.2. Characterization of Carrageenan
4.2.3. First Stage: General Characterization
- Yields
- pH measurement
- Total ash content
- Sulphate content
- Gel strength
- Viscosity
- Swelling capacity
- Molecular weight
- Study of functional groups with FTIR
4.2.4. Solid-State Physical Characterizations
- Morphological observations
- Crystallinity
- Density
- Solid Fraction (SF)
- Tensile strength (TS)
- Bonding index (BI).
- Brittle fracture index (BFI)
- Solubility
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bui, T.N.T.V. Structure, Rheological Properties and Connectivity of Gels Formed by Carrageenan Extracted from Different Red Algae Species. Ph.D. Thesis, Le Mans Université, Le Mans, France, 2019. [Google Scholar]
- BeMiller, J.N. Carragenans. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; AACC International: Eagan, MN, USA, 2019; pp. 279–291. [Google Scholar]
- Distantina, S.; Rochmadi, R.; Wiratni, W.; Fahrurrozi, M. The Mechanism of Carrageenan Extraction from Eucheuma cottonii Using Alkaline Solvent. agriTECH 2012, 32, 397–402. [Google Scholar]
- Imeson, A.P. Carrageenan and Furcellaran, 2nd ed.; Woodhead Publishing Limited: Sawston, UK, 2009. [Google Scholar]
- Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med. (Praha) 2013, 58, 187–205. [Google Scholar] [CrossRef]
- Hermansson, A.M.; Eriksson, E.; Jordansson, E. Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of kappa-carrageenan gels. Carbohydr. Polym. 1991, 16, 297–320. [Google Scholar] [CrossRef]
- Azevedo, G.; Torres, M.D.; Sousa-Pinto, I.; Hilliou, L. Effect of pre-extraction alkali treatment on the chemical structure and gelling properties of extracted hybrid carrageenan from Chondrus crispus and Ahnfeltiopsis devoniensis. Food Hydrocoll. 2015, 50, 150–158. [Google Scholar] [CrossRef]
- Hilliou, L.; Larotonda, F.D.S.; Abreu, P.; Ramos, A.M.; Sereno, A.M.; Gonçalves, M.P. Effect of extraction parameters on the chemical structure and gel properties of κ/ι-hybrid carrageenans obtained from Mastocarpus stellatus. Biomol. Eng. 2006, 23, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.; Anandhakumar, R.; Shanmugam, M. Effect of alkaline treatment on the sulfate content and quality of semi-refined carrageenan prepared from seaweed Kappaphycus alvarezii Doty (Doty) farmed in Indian waters. Afr. J. Biotechnol. 2015, 14, 1584–1589. [Google Scholar]
- Anisuzzaman, S.M.; Bono, A.; Krishnaiah, D. Effect of alkali treatment process parameters on semi refined carrageenan functional groups. Indian J. Chem. Technol. 2014, 21, 386–391. [Google Scholar]
- Ninghidayati, S.; Arina, N.R.; Gunardi, I.; Roesyadi, A. Production of carrageenan from seaweed (Eucheuma cottoni) with KOH treatment. AIP Conf. Proc. 2017, 1840, 060008. [Google Scholar]
- Al-Nahdi, Z.M.; Al-Alawi, A.; Al-Marhobi, I. The Effect of Extraction Conditions on Chemical and Thermal Characteristics of Kappa-Carrageenan Extracted from Hypnea bryoides. J. Mar. Biol. 2019, 2019, 5183261. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Y.; Xiao, Q.; Chen, F.; Weng, H.; Chen, J.; Zhang, Y.; Xiao, A. Eco-Friendly Extraction, Structure, and Gel Properties of ι-Carrageenan Extracted Using Ca(OH)2. Mar. Drugs. 2022, 20, 419. [Google Scholar] [CrossRef]
- Myneedu, L. Effect of Salts on the Structure-Function Relationships of Sodium Kappa-Carrageenan. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2015. [Google Scholar]
- Borgstro, J.; Egermayer, M.; Sparrman, T.; Quist, P.; Piculell, L. Liquid Crystallinity versus Gelation of K -Carrageenan in Mixed Salts: Effects of Molecular Weight, Salt Composition, and Ionic Strength. Langmuir 1998, 7463, 4935–4944. [Google Scholar] [CrossRef]
- Webber, V.; de Carvalho, S.M.; Barreto, P.L.M. Molecular and rheological characterization of carrageenan solutions extracted from Kappaphycus alvarezii. Carbohydr. Polym. 2012, 90, 1744–1749. [Google Scholar] [CrossRef]
- Toumi, S.; Yahoum, M.M.; Lefnaoui, S.; Hadjsadok, A. Synthesis, characterization and potential application of hydrophobically modified carrageenan derivatives as pharmaceutical excipients. Carbohydr. Polym. 2021, 251, 116997. [Google Scholar] [CrossRef]
- Toumi, S.; Yahoum, M.M.; Lefnaoui, S.; Hadjsadok, A.; Sid, A.N.E.H.; Hassein-Bey, A.H.; Amrane, A.; Zhang, J.; Assadi, A.A.; Mouni, L. Development of New Alkylated Carrageenan Derivatives: Physicochemical, Rheological, and Emulsification Properties Assessment. Sustainability 2023, 15, 6473. [Google Scholar] [CrossRef]
- Guan, J.; Li, L.; Mao, S. Applications of Carrageenan in Advanced Drug Delivery; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gupta, V.; Manigauha, A. Modification of natural hydrocolloid as disintegrant in aceclofenac tablet formulation. J. Drug Deliv. Ther. 2021, 11, 42–50. [Google Scholar] [CrossRef]
- Ghanam, D.; Kleinebudde, P. Suitability of κ-carrageenan pellets for the formulation of multiparticulate tablets with modified release. Int. J. Pharm. 2011, 409, 9–18. [Google Scholar] [CrossRef]
- Komersová, A.; Svoboda, R.; Skalická, B.; Bartoš, M.; Šnejdrová, E.; Mužíková, J.; Matzick, K. Matrix Tablets Based on Chitosan–Carrageenan Polyelectrolyte Complex: Unique Matrices for Drug Targeting in the Intestine. Pharmaceuticals 2022, 15, 980. [Google Scholar] [CrossRef]
- Ferdiansyah, R.; Chaerunnisa, A.Y.; Abdassah, M. Karakterisasi Kappa Karagenan dari Eucheuma cottonii asal Perairan Kepulauan Natuna dan Aplikasinya sebagai Matriks Tablet Apung. Indones J. Pharm. Sci. Technol. 2017, 6, 14–26. [Google Scholar] [CrossRef]
- Webber, V.; de Carvalho, S.M.; Ogliari, P.J.; Hayashi, L.; Barreto, P.L.M. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Food Sci. Technol. 2012, 32, 812–818. [Google Scholar] [CrossRef]
- Chaerunisaa, A.Y.; Husni, P.; Murthadiah, F.A. Modifikasi Viskositas Kappa Karagenan Sebagai Gelling Agent Menggunakan Metode Polymer Blend. J. Indones Soc. Integr. Chem. 2020, 12, 73–83. [Google Scholar]
- Gupta, V.K.; Hariharan, M.; Wheatley, T.A.; Price, J.C. Controlled-release tablets from carrageenans: Effect of formulation, storage and dissolution factors. Eur. J. Pharm. Biopharm. 2001, 51, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Distantina, S.; Fadilah, F.; Kaavessina, M. Swelling behaviour of kappa carrageenan hydrogel in neutral salt solution. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2016, 10, 917–920. [Google Scholar]
- Diharmi, A.; Irasari, N. Characteristic of carrageenan Eucheuma cottonii collected from the coast of Tanjung Medang Village and Jaga Island, Riau. IOP Conf. Ser. Earth Environ. Sci. 2019, 404, 012049. [Google Scholar] [CrossRef]
- Astuti, K.W.; Putu, N.; Dewi, A.; Ngurah, I.G.; Dewantara, A. Optimization of Isolation Method of Carrageenan from Kappaphycuss alvarezii Doty Using Factorial Experimental Design. J. Health Sci. Med. 2017, 1, 4–7. [Google Scholar]
- Mishra, P.C.; Jayasankar, R.; Seema, C. Yield and quality of carrageenan from Kappaphycus alvarezii subjected to different physical and chemical treatments. Seaweed Res. Utiln. 2006, 28, 113–117. [Google Scholar]
- Awalludin, A.; Mingu, N.; Yaser, A.Z.; Mamat, H.; Kamaruzaman, K.A.; Jamain, Z.; Rahman, M.L.; Majid, M.H.A.; Sarjadi, M.S. Extraction and physicochemical properties of refined kappa-carrageenan from Kappaphycus alvarezii originated from semporna, sabah. J. Appl. Sci. Eng. 2022, 25, 411–416. [Google Scholar] [CrossRef]
- Kusumaningrum, I.K.; Marfuah, S.; Fadilah, M.N.; Wijaya, A.R.; Kurniawan, F. The Effect of Mass Ratio between NaOH to k-Carrageenan and Alkalization Temperature on Carboxymethyl k-Carrageenan Synthesis. IOP Conf. Ser. Earth Environ. Sci. 2019, 276, 012021. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Munisamy, S.; Bhat, R. Effect of potassium hydroxide on rheological and thermo-mechanical properties of semi-refined carrageenan (SRC) films. Food Biosci. 2018, 26, 104–112. [Google Scholar] [CrossRef]
- Narang, A.S.; Tao, L.; Zhao, J.; Keluskar, R.; Gour, S.; Stevens, T.; Macias, K.; Remy, B.; Pandey, P.; LaRoche, R.D.; et al. Chapter 10—Effect of Binder Attributes on Granule Growth and Densification. In Handbook of Pharmaceutical Wet Granulation; Narang, A.S., Badawy, S.I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 351–386. [Google Scholar]
- Rowe, R.C.; Sheskey, J.P.Q.P. Handbook of Pharmaceutical Excipients, 6th ed.; Libros Digitales-Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Sinurat, E. Sifat Fungsional Formula Kappa dan Iota Karaginan dengan Gum. J. Pascapanen Bioteknol. Kelaut. Perikan. 2006, 1, 1–8. [Google Scholar] [CrossRef]
- Bui, V.T.N.T.; Nguyen, B.T.; Renou, F.; Nicolai, T. Rheology and microstructure of mixtures of iota and kappa-carrageenan. Food Hydrocoll. 2019, 89, 1–27. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Compedium of Food Additive Specifications. In Compendium of Food Additive Monograph 16; FAO: Rome, Italy, 2014; Volume 79, pp. 7–16. [Google Scholar]
- Montoro, M.A.; Francisca, F.M. Effect of ion type and concentration on rheological properties of natural sodium benton-ite dispersions at low shear rates. Appl. Clay Sci. 2019, 178, 105132. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Introduction to Plastics. In Chemical Resistance of Engineering Thermoplastics; Baur, E., Ruhrberg, K., Woishnis, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 907–980. [Google Scholar]
- Campo, V.L.; Kawano, D.F.; Braz, D.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Urakawa, H.; Kajiwara, K. Structural characteristics of carrageenan gels: Various types of counter ions. Food Hydrocoll. 2003, 17, 481–485. [Google Scholar] [CrossRef]
- Evageliou, V.I.; Ryan, P.M.; Morris, E.R. Food Hydrocolloids Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan. Food Hydrocoll. 2018, 86, 141–145. [Google Scholar] [CrossRef]
- Janaswamy, S.; Chandrasekaran, R. Cation-induced polymorphism in iota-carrageenan. Carbohydr. Polym. 2005, 60, 499–505. [Google Scholar] [CrossRef]
- Michel, A.S.; Mestdagh, M.M.; Axelos, M.A.V. Physico-chemical properties of carrageenan gels in presence of various cations. Int. J. Biol. Macromol. 1997, 21, 195–200. [Google Scholar] [CrossRef]
- Kara, S.; Tamerler, C.; Pekcan, Ö. Cation effects on swelling of κ-carrageenan: A photon transmission study. Biopolymers 2003, 70, 240–251. [Google Scholar] [CrossRef]
- Lai, V.M.F.; Wong, P.A.L.; Lii, C.-Y. Effects of Cation Properties on Sol-gel Transition and Gel Properties of k-carrageenan. Food Eng. Phys. Prop. 2000, 65, 1332–1337. [Google Scholar] [CrossRef]
- Mangione, M.R.; Giacomazza, D.; Bulone, D.; Martorana, V.; Cavallaro, G.; San Biagio, P.L. K+ and Na+ effects on the gelation properties of κ-Carrageenan. Biophys. Chem. 2005, 113, 129–135. [Google Scholar] [CrossRef]
- Sandhan, S.B.; Derle, D.V. A Review on Functionality Assessment of Multifunctional Excipients. Int. J. Pharm. Sci. Res. 2019, 10, 4078–4089. [Google Scholar]
- Tye, C.K.; Sun, C.E.; Gregory, A. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J. Pharm. Sci. 2004, 94, 465–472. [Google Scholar] [CrossRef]
- Wiącek, J. Geometrical parameters of binary granular mixtures with size ratio and volume fraction: Experiments and DEM simulations. Granul Matter. 2016, 18, 42. [Google Scholar] [CrossRef]
- Anwar, E. Eksipien Dalam Sediaan Farmasi; Dian Rakyat: East Jakarta, Indonesia, 2012. [Google Scholar]
- Okoye, E.I.; Onyekweli, A.O.; Kunle, O.O.; Arhewoh, M.I. Brittle fracture index (BFI) as a tool in the classification, grouping and ranking of some binders used in tablet formulation: Lactose tablets. Sci. Res. Essays 2010, 5, 500–506. [Google Scholar]
- Association of Official Analytical Chemist (AOAC). Determination of Moisture, Ash, Protein and Fat. Official Method of Analysis of the Association of Analytical Chemists, 18th ed.; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Distantina, S.; Rochmadi, R.; Fahrurrozi, M.; Wiratni, W. Sulfation of Kappa carrageenan with K2SO4. J. Eng. Sci. Technol. 2015, 10, 96–103. [Google Scholar]
- Distantina, S.; Fahrurrozi, M.; Wiratni; Rochmadi. Carrageenan Properties Extracted from Eucheuma cottonii, Indonesia. World Acad. Sci. Eng. Technol. 2011, 54, 738–742. [Google Scholar]
- Rahmi, D.; Paramadina, S.; Anjelika, M.; Widjajanti, R. Optimized swelling properties of hydrogels based on poly(vinyl alcohol)-carrageenan. AIP Conf. Proc. 2020, 2243, 030019-1–030019-6. [Google Scholar]
- Meiyasa, F.; Tarigan, N. Peranan Kalium Hidroksida (KOH) Terhadap Mutu Karaginan Eucheuma cottonii Di Indonesia. J. Ilmu-Ilmu Pertan. 2018, 2, 131–136. [Google Scholar] [CrossRef]
- Holman, L.; Leuenberger, H. The relationship between solid fraction and mechanical properties of compacts—The percolation theory model approach. Int. J. Pharm. 1988, 46, 35–44. [Google Scholar] [CrossRef]
- Lamey, K.; Schwartz, J.; Muller, F. Development and Evaluation of a Miniaturized Procedure for Determining the Bonding Index: A Novel Prototype for Solid Dosage Formulation Development. Pharm. Dev. Technol. 2003, 8, 239–252. [Google Scholar] [CrossRef]
- Hiestand, E.; Wells, J.; Peot, C.; Ochs, J. Physical processes of tableting. J. Pharm. Sci. 1977, 66, 510–519. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S.; Cuq, J.-L. Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
Alkaline Solvents | pH Solution | Yields (%) | Carrageenan pH | Total Ash Content (%) |
---|---|---|---|---|
KOH | 9 | 25.69 ± 0.12 | 8.40 ± 0.03 | 26.82 ± 0.98 |
11 | 27.72 ± 0.16 | 8.30 ± 0.05 | 33.17 ± 0.11 | |
13 | 30.65 ± 0.09 | 8.57 ± 0.08 | 36.41 ± 0.49 | |
NaOH | 9 | 23.37 ± 0.19 | 8.32 ± 0.06 | 22.51 ± 0.67 |
11 | 29.73 ± 0.26 | 8.47 ± 0.02 | 24.37 ± 0.21 | |
13 | 34.51 ± 0.18 | 8.52 ± 0.06 | 36.28 ± 0.46 | |
Ca(OH)2 | 9 | 26.62 ± 0.19 | 8.40 ± 0.03 | 33.05 ± 0.14 |
11 | 28.56 ± 0.33 | 8.17 ± 0.04 | 36.34 ± 0.40 | |
13 | 32.87 ± 0.35 | 9.20 ± 0.10 | 37.64 ± 0.30 |
Alkaline Solvents | pH Solution | Sulphate Content (%) | Viscosity (cP) | Gel Strength (g/cm2) | Molecular Weights (KDa) |
---|---|---|---|---|---|
KOH | 9 | 18.24 ± 0.50 | 4.333 ± 94 | 137.93 ±13.44 | 165.07 ± 0.20 |
11 | 19.11 ± 0.50 | 1.133 ± 94 | 53.34 ± 8.87 | 45.54 ± 0.00 | |
13 | 20.64 ± 0.30 | 5.933 ± 94 | 82.39 ± 5.97 | 289.80 ± 0.10 | |
NaOH | 9 | 23.43 ± 0.50 | 2.433 ± 47 | 44.92 ± 1.15 | 170.58 ± 0.30 |
11 | 23.26 ± 1.10 | 1.167 ± 47 | 12.78 ± 0.02 | 37.29 ± 0.00 | |
13 | 21.63 ± 1.10 | 1.700 ± 82 | 52.37 ± 2.95 | 105.58 ± 0.70 | |
Ca(OH)2 | 9 | 19.74 ± 1.60 | 350 ±41 | 38.51 ± 5.18 | 11.02 ± 0.00 |
11 | 16.54 ± 1.10 | 1.067 ± 94 | 29.08 ± 2.39 | 7.59 ± 0.00 | |
13 | 21.72 ± 1.10 | 2.550 ± 41 | 56.26 ± 4.91 | 71.79 ± 0.30 |
Solid Physical Properties | KOH pH 13 | NaOH pH 9 | Ca(OH)2 pH 13 |
---|---|---|---|
Density (g/mL) | 1.94 ± 0.01 | 1.94 ± 0.03 | 2.02 ± 0.07 |
Solid Fraction | 0.42 ± 0.03 | 0.70 ± 0.01 | 0.71± 0.01 |
Tensile Strength (MPa) | 1.17 ± 0.02 | 0.08 ± 0.00 | 0.05 ± 0.00 |
Bond Index | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 |
Brittle Fracture Index | 0.67 ± 0.03 | 0.26 ± 0.01 | 0.04 ± 0.00 |
Solubility (%) | 68.60 ± 1.80 | 86.30 ± 2.30 | 34.70 ± 2.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdiansyah, R.; Abdassah, M.; Zainuddin, A.; Rachmaniar, R.; Chaerunisaa, A.Y. Effects of Alkaline Solvent Type and pH on Solid Physical Properties of Carrageenan from Eucheuma cottonii. Gels 2023, 9, 397. https://doi.org/10.3390/gels9050397
Ferdiansyah R, Abdassah M, Zainuddin A, Rachmaniar R, Chaerunisaa AY. Effects of Alkaline Solvent Type and pH on Solid Physical Properties of Carrageenan from Eucheuma cottonii. Gels. 2023; 9(5):397. https://doi.org/10.3390/gels9050397
Chicago/Turabian StyleFerdiansyah, Rival, Marline Abdassah, Achmad Zainuddin, Revika Rachmaniar, and Anis Yohana Chaerunisaa. 2023. "Effects of Alkaline Solvent Type and pH on Solid Physical Properties of Carrageenan from Eucheuma cottonii" Gels 9, no. 5: 397. https://doi.org/10.3390/gels9050397
APA StyleFerdiansyah, R., Abdassah, M., Zainuddin, A., Rachmaniar, R., & Chaerunisaa, A. Y. (2023). Effects of Alkaline Solvent Type and pH on Solid Physical Properties of Carrageenan from Eucheuma cottonii. Gels, 9(5), 397. https://doi.org/10.3390/gels9050397