Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering
Abstract
:1. Introduction
2. Polymer Gel Material
2.1. Physically Crosslinking Polymer Gels
2.1.1. Hydrophobic Association Interactions
2.1.2. Hydrogen Bonding Interactions
2.1.3. Electrostatic Interactions
2.1.4. Van der Waals Interactions
2.2. Chemically CrossLinking Polymer Gels
2.2.1. Imine Bonding
2.2.2. Acylhydrazone Bonding
2.2.3. Diels–Alder Reactions
3. Application of Functional Polymer Gels
3.1. In Drilling Fluids
3.2. In fracturing Fluids
3.3. In Enhanced Oil Recovery
4. Research Prospect of Functional Polymer Gels
4.1. In Drilling Fluids
4.2. In Fracturing Fluid
4.3. In Enhanced Oil Recovery
5. Conclusions
- (1)
- Polymer gel material is a three-dimensional mesh structure formed by the polymerization of molecular chains through crosslinking. The classification of the crosslinking mode is divided into physically crosslinking gels with hydrophobic bonding interaction, hydrogen bonding interaction, electrostatic interaction and van der Waals interaction and chemically crosslinking gels with imine bonding interaction, acylhydrazone bonding interaction and Diels–Alder reaction. The reversible changes in the molecular structure of the gels through covalent or non-covalent bond interactions have strong mechanical properties. Therefore, environmentally responsive gels and self-healing gels can be developed for bioengineering, oil field development, artificial intelligence, etc.
- (2)
- Polymer gel materials are suitable for drilling fluids, fracturing fluids and improving the enhanced oil recovery. As oil fields are increasingly exploited at depth, more attention is paid to the development of high-temperature and salt-resistant polymer gels. Weak gels, plugging gels and drilling fluid materials such as well-wall reinforcing agents enter the formation with drilling and adsorb in the fractures and seal and strengthen the good wall after water absorption and expansion, extrusion and deformation and other external forces. Polymer gel is used as a fracturing fluid in the formation to create a seal by sol–gel conversion and increase the permeability of the formation. In the field of chemical oil drive, polymer gel increases the enhanced oil recovery by temporarily sealing the high permeability layer so that the injected water flows into the low permeability reservoir preferentially and increases the wave area of the injected water.
- (3)
- As oilfield extraction is increasingly moving to high-temperature and ultra-deep wells, the exploration environment is becoming more and more hostile, so the polymer gel materials needed also need to be temperature resistant, salt resistant and PH responsive and to possess other properties. We promote the development of an intelligent polymer gel and a higher-performance self-healing gel for malignant leak plugging, well wall stabilization and recovery enhancement work. In addition, we expand the application fields of polymer gel materials, develop scientific and intelligent working methods and promote the development of polymer gel materials in the direction of more intelligence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Pieklarz, K.; Jenczyk, J.; Modrzejewska, Z.; Owczarz, P.; Jurga, S. An Investigation of the Sol-Gel Transition of Chitosan Lactate and Chitosan Chloride Solutions via Rheological and NMR Studies. Gels 2022, 8, 670. [Google Scholar] [CrossRef]
- Pollot, B.E.; Rathbone, C.R.; Wenke, J.C.; Guda, T. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Chan, K.H.; Lu, W.; Ding, T.; Ng, S.W.L.; Cheng, Y.; Li, T.; Hong, M.; Tee, B.C.K.; Ho, G.W. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibres. Nat. Commun. 2022, 13, 3369. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, M.; Ran, Y.; Wu, Y.; Wang, J.; Gao, F.; Liu, Z.; Xi, J.; Ye, L.; Feng, Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers 2022, 14, 1549. [Google Scholar] [CrossRef] [PubMed]
- Masood, F.; Makhdoom, M.A.; Channa, I.A.; Gilani, S.J.; Khan, A.; Hussain, R.; Batool, S.A.; Konain, K.; Rahman, S.U.; Wadood, A.; et al. Development and Characterization of Chitosan and Chondroitin Sulfate Based Hydrogels Enriched with Garlic Extract for Potential Wound Healing/Skin Regeneration Applications. Gels 2022, 8, 676. [Google Scholar] [CrossRef]
- Otani, T.; Mineshita, H.; Miyazawa, K.; Nakazawa, Y.; Kasuga, H.; Kawai, R.; Takanishi, A. Energy Efficiency Improvement of a Robotic Finger With Ultra High Molecular Weight Polyethylene Gear. IEEE Access 2022, 10, 100033–100040. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef]
- Echeverria, C.; Fernandes, S.N.; Godinho, M.H.; Borges, J.P.; Soares, P.I.P. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018, 4, 54. [Google Scholar] [CrossRef]
- Abbas, A.H.; Ajunwa, O.M.; Mazhit, B.; Martyushev, D.A.; Bou-Hamdan, K.F.; Alsaheb, R.A.A. Evaluation of OKRA (Abelmoschus esculentus) Macromolecular Solution for Enhanced Oil Recovery in Kazakhstan Carbonate Reservoir. Energies 2022, 15, 6827. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, Z. Constitutive model of salt concentration-sensitive hydrogel. Mech. Mater. 2019, 136, 103092. [Google Scholar] [CrossRef]
- Fujii, A.; Maruyama, T.; Sotani, T.; Ohmukai, Y.; Matsuyama, H. pH-responsive behavior of hydrogel microspheres altered by layer-by-layer assembly of polyelectrolytes. Colloids Surf. Physicochem. Eng. Asp. 2009, 337, 159–163. [Google Scholar] [CrossRef]
- Palomino, K.; Magaña, H.; Meléndez-López, S.G.; Cornejo-Bravo, J.M.; Serrano-Medina, A.; Alatorre-Meda, M.; Rodríguez-Velázquez, E.; Rivero, I. Loading and release of a model high-molecular-weight protein from temperature-sensitive micro-structured hydrogels. MRS Commun. 2019, 9, 1041–1045. [Google Scholar] [CrossRef]
- Ginting, M.; Pasaribu, S.P.; Masmur, I.; Kaban, J. Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties. RSC Adv. 2020, 10, 5050–5057. [Google Scholar] [CrossRef]
- Beziau, A.; Fortney, A.; Fu, L.; Nishiura, C.; Wang, H.; Cuthbert, J.; Gottlieb, E.; Balazs, A.C.; Kowalewski, T.; Matyjaszewski, K. Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. Polymer 2017, 126, 224–230. [Google Scholar] [CrossRef]
- Kadam, Y.; Pochat-Bohatier, C.; Sanchez, J.; El Ghzaoui, A. Modulating Viscoelastic Properties of Physically Crosslinked Self-Assembled Gelatin Hydrogels through Optimized Solvent Conditions. J. Dispers. Sci. Technol. 2015, 36, 1349–1356. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, M.; Zhang, L.; He, B.; Chen, X.; Sun, J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021, 256, 117580. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Lin, Y.; Cheng, Y.; Han, W.; Yuan, G.; Jia, H. High-strength, biocompatible and multifunctional hydrogel sensor based on dual physically cross-linked network. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128091. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Bai, Y.; Lv, K.; Wang, Z.; Xu, C.; Dai, L.; Wang, R. Review of the application of environmentally responsive gels in drilling and oil recovery engineering: Synthetic materials, mechanism, and application prospect. J. Pet. Sci. Eng. 2022, 215, 110581. [Google Scholar] [CrossRef]
- Han, J.; Sun, J.; Lv, K.; Yang, J.; Li, Y. Polymer Gels Used in Oil-Gas Drilling and Production Engineering. Gels 2022, 8, 637. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, Q.; Sun, J.; Lv, K.; Shang, X.; Liu, C.; Cheng, R.; Wang, F. Self-healing hydrogels and their action mechanism in oil–gas drilling and development engineering: A systematic review and prospect. J. Nat. Gas Sci. Eng. 2021, 96, 104250. [Google Scholar] [CrossRef]
- Akay, G.; Hassan-Raeisi, A.; Tuncaboylu, D.; Orakdogen, N.; Abdurrahmanoglu, S.; Oppermann, W.P.; Okay, O. Self-healing hydrogels formed in catanionic surfactant solutions. Soft Matter. 2013, 9, 2254–2261. [Google Scholar] [CrossRef]
- Han, Y.; Tan, J.; Wang, D.; Xu, K.; An, H. Novel approach to promote the hydrophobic association: Introduction of short alkyl chains into hydrophobically associating polyelectrolytes. J. Appl. Polym. Sci. 2019, 136, 47581. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Niu, N.; Zou, J.; Liu, F. A simple coordination strategy for preparing a complex hydrophobic association hydrogel. J. Appl. Polym. Sci. 2018, 135, 46400. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Bai, Y.; Lv, K.; Li, J.Y.; Li, M.; Zhu, Y. Preparation and characterization of supramolecular gel suitable for fractured formations. Pet. Sci. 2023. [Google Scholar] [CrossRef]
- Fu, X.; Qin, F.; Liu, T.; Zhang, X. Enhanced oil recovery performance and solution properties of hydrophobic associative xanthan gum. Energy Fuels 2022, 36, 181–194. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C.; Kumar, H.; He, X.; Lu, Q.; Bai, H.; Kim, K.; Hu, J. The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion. Gels. 2022, 8, 682. [Google Scholar] [CrossRef]
- Fan, H.; Wang, J.; Jin, Z. Tough, Swelling-Resistant, Self-Healing, and Adhesive Dual-Cross-Linked Hydrogels Based on Polymer–Tannic Acid Multiple Hydrogen Bonds. Macromolecules 2018, 51, 1696–1705. [Google Scholar] [CrossRef]
- Beijer, F.H.; Kooijman, H.; Spek, A.L.; Sijbesma, R.P.; Meijer, E.W. Self-Complementarity Achieved through Quadruple Hydrogen Bondin. Angew. Chem. Int. Ed. 1998, 37, 75–78. [Google Scholar] [CrossRef]
- Jiang, Z.; Xiao, Y.; Kang, Y.; Pan, M.; Li, B.; Zhang, S. Shape Memory Polymers Based on Supramolecular Interactions. ACS Appl. Mater. Interfaces 2017, 9, 20276–20293. [Google Scholar] [CrossRef]
- Zhang, R.; Fu, Q.; Zhou, K.; Yao, Y.; Zhu, X. Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. Polymer 2020, 199, 122603. [Google Scholar] [CrossRef]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Review: The Cucurbit[n]uril Family. Angew. Chem. Int. Ed. 2005, 44, 4844. [Google Scholar] [CrossRef]
- Yang, Q.; Lv, J.; Li, P. A pH-responsive Self-healing Gel with Crosslinking of Cucurbituril (CB[n]) via Hydrogen Bonding. Chem. Lett. 2018, 47, 192–195. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.; Li, R.; Zhang, Y.; Liu, Z.; Huang, Y.; Long, S.; Li, H. Multiple Hydrogen Bonds-Reinforced Hydrogels with High Strength, Shape Memory, and Adsorption Anti-Inflammatory Molecules. Macromol. Rapid Commun. 2020, 41, 2000202. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Yang, J.; Zheng, Q.; Wu, N.; Lv, Z.; Jiang, Z. Ultra-stretchable hydrogels with hierarchical hydrogen bonds. Sci. Rep. 2020, 10, 11727. [Google Scholar] [CrossRef]
- Sun, T.L.; Luo, F.; Kurokawa, T.; Karobi, S.N.; Nakajima, T.; Gong, J.P. Molecular structure of self-healing polyampholyte hydrogels analyzed from tensile behaviors. Soft Matter. 2015, 11, 9355–9366. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.L.; Kurokawa, T.; Kuroda, S.; Ihsan, A.B.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937. [Google Scholar] [CrossRef]
- Jing, H.; He, L.; Feng, J.; Fu, H.; Guan, S.; Guo, P. High strength hydrogels with multiple shape-memory ability based on hydrophobic and electrostatic interactions. Soft Matter 2019, 15, 5264–5270. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Bai, H.; Zhang, T.; Ibarra-Galvan, V.; Song, S. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr. Polym. 2018, 198, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, A.B.; Sun, T.L.; Kurokawa, T.; Karobi, S.N.; Nakajima, T.; Nonoyama, T.; Roy, C.K.; Luo, F.; Gong, J.P. Self-Healing Behaviors of Tough Polyampholyte Hydrogels. Macromolecules 2016, 49, 4245–4252. [Google Scholar] [CrossRef]
- Hollamby, M.J.; Karny, M.; Bomans, P.H.; Sommerdijk, N.A.; Saeki, A.; Seki, S.; Minamikawa, H.; Grillo, I.; Pauw, B.R.; Brown, P.; et al. Directed assembly of optoelectronically active alkyl-π-conjugated molecules by adding n-alkanes or π-conjugated species. Nat. Chem. 2014, 6, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Amharar, S.; Atsay, A.; Aydogan, A. Ion Pair Recognition Based Supramolecular Polymer Showing Rapid and Reversible Sol–Gel Transition through van der Waals Interactions. ACS Appl. Polym. Mater. 2020, 2, 5371–5376. [Google Scholar] [CrossRef]
- Siegel, R.A. Physical Properties of Polymeric Gels Edited by J. P. Cohen Addad (University Joseph-Fourier). Wiley: New York. 1996. xii + 311 pp. $89.95. ISBN 0-471-93971-4. J. Am. Chem. Soc. 1996, 118, 50. [Google Scholar] [CrossRef]
- Pan, J.; Tang, L.; Dong, Q.; Li, Y.; Zhang, H. Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions. Food Res. Int. 2021, 140, 110057. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, S.; Zhao, S.; Li, Y.; Cheng, L.; Li, J.; Yin, Y. Synthesis and characterization of disulfide-crosslinked alginate hydrogel scaffolds. Mater. Sci. Eng. C 2012, 32, 2153–2162. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Qin, Y.; Dong, P.; Yao, W.; Matz, J.; Ajayan, P.M.; Shen, J.; Ye, M. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio. Nat. Commun. 2021, 12, 4092. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Zhang, X.; Tao, L.; Li, S.; Wei, Y. Facilely prepared inexpensive and biocompatible self-healing hydrogel: A new injectable cell therapy carrier. Polym. Chem. 2012, 3, 3235–3238. [Google Scholar] [CrossRef]
- Wolfel, A.; Alvarez Igarzabal, C.I.; Romero, M.R. Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links. Eur. Polym. J. 2020, 140, 110038. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Fu, B.; Cheng, B.; Jin, X.; Bao, X.; Wang, Z.; Hu, Q. Chitosan-based double network hydrogels with self-healing and dual-responsive shape memory abilities. J. Appl. Polym. Sci. 2019, 136, 48247. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, P.; Tiwari, S. Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery. Int. J. Biol. Macromol. 2020, 160, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Chen, Q.; Fu, L.; Tao, L.; Wei, Y. Injectable and Self-Healing Chitosan Hydrogel Based on Imine Bonds: Design and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 2198. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: From Old Chemistry to Modern Day Innovations. Adv. Mater. 2017, 29, 1606100. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, S.; Chen, Y.; Chen, H.; Wang, M.; Tan, Y. Salt endurable and shear resistant polymer systems based on dynamically reversible acyl hydrazone bond. J. Mol. Liq. 2022, 346, 117083. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, C.; Liu, C.; Yang, L.; Zhang, M.; Liu, W.; Wang, J.; Jian, X. Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds. J. Mater. Sci. 2019, 54, 8814–8828. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Guo, Z.; Hu, Y. Double dynamic bonds tough hydrogel with high self-healing properties based on acylhydrazone bonds and borate bonds. Polym. Adv. Technol. 2022, 33, 2528–2541. [Google Scholar] [CrossRef]
- Apostolides, D.E.; Patrickios, C.S. Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: Synthesis, characterization and applications. Polym. Int. 2018, 67, 627–649. [Google Scholar] [CrossRef]
- Deng, G.; Li, F.; Yu, H.; Liu, F.; Liu, C.; Sun, W.; Jiang, H.; Chen, Y. Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol-Gel Transitions. ACS Macro Lett. 2012, 1, 275–279. [Google Scholar] [CrossRef]
- Zhang, Z.; Jamieson, C.S.; Zhao, Y.L.; Li, D.; Ohashi, M.; Houk, K.N.; Tang, Y. Enzyme-Catalyzed Inverse-Electron Demand Diels-Alder Reaction in the Biosynthesis of Antifungal Ilicicolin, H. J. Am. Chem. Soc. 2019, 141, 5659–5663. [Google Scholar] [CrossRef]
- Gandini, A.; Lacerda, T.M. From monomers to polymers from renewable resources: Recent advances. Prog. Polym. Sci. 2015, 48, 1–39. [Google Scholar] [CrossRef]
- Shao, C.; Wang, M.; Chang, H.; Xu, F.; Yang, J. A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels–Alder Click Reaction. ACS Sustain. Chem. Eng. 2017, 5, 6167–6174. [Google Scholar] [CrossRef]
- Li, D.Q.; Wang, S.Y.; Meng, Y.J.; Guo, Z.W.; Cheng, M.M.; Li, J. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr. Polym. 2021, 268, 118244. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, L.; Yu, X.; Wang, C.; Wang, Z. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 82, 299–309. [Google Scholar] [CrossRef]
- Ming, L.; Huang, W.; Ning, L.; Jia, J.; Li, J.; Wang, Y.; Li, J. The damage mechanism of oil-based drilling fluid for tight sandstone gas reservoir and its optimization. J. Pet. Sci. Eng. 2017, 158, 616–625. [Google Scholar]
- Martyushev, D.A.; Govindarajan, S.K. Development and study of a visco-elastic gel with controlled destruction times for killing oil wells. J. King Saud Univ.-Eng. Sci. 2021, 34, 408–415. [Google Scholar] [CrossRef]
- Huang, X.; Meng, X.; Li, M.; Sun, J.; Lv, K.; Gao, C. Improving the Weak Gel Structure of an Oil-Based Drilling Fluid by Using a Polyamide Wax. Gels 2022, 8, 631. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, G.; Xiang, C. Synthesis and Properties of a Gel Agent with a High Salt Resistance for Use in Weak-Gel-Type Water-Based Drilling Fluid. Arab. J. Sci. Eng. 2022, 47, 12045–12055. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, P.; Zhang, Q.; Zhang, T.; Zhu, K.; Zhou, C. A Polymer Plugging Gel for the Fractured Strata and Its Application. Materials 2018, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Sun, J.; Luo, X. Preparation of MOF-Based Core-Shell Gel Particles with Catalytic Activity and Their Plugging Performance. Gels 2023, 9, 44. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, J.; Liu, F.; Bai, Y.; Wang, R. A laboratory study of self-healing hydrophobic association gels used as lost circulation material. Colloids Surf. A Physicochem. Eng. Asp. 2022, 646, 128964. [Google Scholar] [CrossRef]
- Vargas, G.G.; Andrade, R.M.; Loureiro, B.V.; Soares, E.J. Rheological properties of a cross-linked gel based on guar gum for hydraulic fracture of oil wells. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 489. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Li, Y.; Yang, H.; Yan, F.; Zheng, J.; Wu, J.; Huang, J.; Wu, Z.; Luo, C.; et al. Development and Field Application of a New Ultralow Guar Gum Concentration Weighted Fracturing Fluid in HPHT Reservoirs. J. Chem. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Xiong, J.; Zhao, Z.; Sun, W.; Liu, W. Foam Stabilization Mechanism of a Novel Non-cross-linked Foam Fracturing Fluid. ACS Omega 2021, 6, 32863–32868. [Google Scholar] [CrossRef]
- Martyushev, D.A.; Vinogradov, J. Development and application of a double action acidic emulsion for improved oil well performance: Laboratory tests and field trials. Colloids Surf. A Physicochem. Eng. Asp. 2020, 612, 125998. [Google Scholar] [CrossRef]
- Fan, M.; Wang, L.; Li, J.; He, P.; Lai, X.; Gao, J.; Liu, G.; Wen, X. Preparation of supramolecular viscoelastic polymers with shear, temperature, and salt resistance/sensitivity by amphiphilic functional monomer modification. Polym. Test. 2022, 116, 107799. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, T.; Luo, P.; Li, Y.; Liu, J.; Cheng, J.; Yu, Y. Performance and field implementation of a new fracturing fluid consisting of hydrophobically associating polyacrylamide and anionic surfactant. J. Polym. Eng. 2016, 36, 13–21. [Google Scholar] [CrossRef]
- Yun, K. Weak alkali ASP flooding in the second type reservoir in the A OilfieldProfile control technology and effect. IOP Conf. Ser. Earth Environ. Sci. 2021, 770, 012072. [Google Scholar] [CrossRef]
- Wang, C.; Zhong, L.; Liu, Y.; Han, Y.; Zhao, P.; Yuan, Y.; Han, X. Characteristics of Weak-Gel Flooding and Its Application in LD10-1 Oilfield. ACS Omega 2020, 5, 24935–24945. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Wang, R.; Liu, Y.; Zhang, S. Study of action mechanisms and properties of Cr3+ cross-linked polymer solution with high salinity. Pet. Sci. 2012, 9, 75–81. [Google Scholar] [CrossRef]
- Cui, C.; Zhou, Z.; He, Z. Enhance oil recovery in low permeability reservoirs: Optimization and evaluation of ultra-high molecular weight HPAM / phenolic weak gel system. J. Pet. Sci. Eng. 2020, 195, 107908. [Google Scholar] [CrossRef]
- Shafiei, M.; Kazemzadeh, Y.; Martyushev, D.A.; Dai, Z.; Riazi, M. Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Sci. Rep. 2023, 13, 4100. [Google Scholar] [CrossRef]
- Liang, T.; Hou, J.; Qu, M.; Zhao, M.; Raj, I. High-viscosity alpha-starch nanogel particles to enhance oil recovery. RSC Adv. 2020, 10, 8275–8285. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Y. Profile control performance and field application of preformed particle gel in low-permeability fractured reservoir. J. Pet. Explor. Prod. Technol. 2020, 11, 477–482. [Google Scholar] [CrossRef]
- Salunkhe, B.; Schuman, T.; Al Brahim, A.; Bai, B. Ultra-high temperature resistant preformed particle gels for enhanced oil recovery. Chem. Eng. J. 2021, 426, 130712. [Google Scholar] [CrossRef]
- Gidley, J.L.; Holditch, S.A.; Nierode, D.E.; Veatch, R.W. Recent Advances in Hydraulic Fracturing; SPE: Houston, TX, USA, 1989; p. 12. [Google Scholar]
- El-Masry, J.F.; Bou-Hamdan, K.F.; Abbas, A.H.; Martyushev, D.A. A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications. Energies 2023, 16, 691. [Google Scholar] [CrossRef]
- Kumar, R.; Socorro, D.; Pernalete, M.A.; Gonzalez, K.; Atalay, N.; Nava, R.J.; Lolley, C.; Kumar, M.; Arbelaez, A. Unique Infill Configuration To Unlock Additional Barrels in the Boscán Heavy-Oil Water-Injection Project. Spe Reserv. Eval. Eng. 2020, 23, 566–577. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Liu, Y.; Yang, K.; Lang, Y. Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering. Gels 2023, 9, 413. https://doi.org/10.3390/gels9050413
Bai Y, Liu Y, Yang K, Lang Y. Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering. Gels. 2023; 9(5):413. https://doi.org/10.3390/gels9050413
Chicago/Turabian StyleBai, Yingrui, Yuan Liu, Keqing Yang, and Youming Lang. 2023. "Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering" Gels 9, no. 5: 413. https://doi.org/10.3390/gels9050413
APA StyleBai, Y., Liu, Y., Yang, K., & Lang, Y. (2023). Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering. Gels, 9(5), 413. https://doi.org/10.3390/gels9050413