Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. pH Measurement
2.2. Viscosity Measurement
2.3. Tested Microorganisms
2.4. Biocompatibility and Cell Viability
2.5. SEM Measurement
2.6. TEM Measurement
3. Conclusions
4. Materials and Methods
4.1. Material Used
4.2. Silver Nitrate Sol-Gel Preparation
4.3. pH Test
4.4. Viscosity Test
4.5. Antibacterial Effect Measurements
4.6. Biocompatibility Test
4.7. SEM (Scanning Electron Microscope) Test
4.8. TEM (Transmission Electron Microscopy) Test
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pawlik, J.; Tomaszek, L.; Mazurek, H.; Mędrzycka-Dąbrowska, W. Risk Factors and Protective Factors against Ventilator-Associated Pneumonia—A Single-Center Mixed Prospective and Retrospective Cohort Study. J. Pers. Med. 2022, 12, 597. [Google Scholar] [CrossRef] [PubMed]
- Pozuelo-Carrascosa, D.P.; Herráiz-Adillo, Á.; Alvarez-Bueno, C.; Añón, J.M.; Martínez-Vizcaíno, V.; Cavero-Redondo, I. Subglottic secretion drainage for preventing ventilator-associated pneumonia: An overview of systematic reviews and an updated meta-analysis. Eur. Respir. Rev. 2020, 29, 190107. [Google Scholar] [CrossRef] [PubMed]
- Cheema, H.A.; Shahid, A.; Ayyan, M.; Mustafa, B.; Zahid, A.; Fatima, M.; Ehsan, M.; Athar, F.; Duric, N.; Szakmany, T. Probiotics for the Prevention of Ventilator-Associated Pneumonia: An Updated Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2022, 14, 1600. [Google Scholar] [CrossRef]
- De Souza, P.R.; De Andrade, D.; Cabral, D.B.; Watanabe, E. Endotracheal tube biofilm and ventilator-associated pneumonia with mechanical ventilation. Microsc. Res. Tech. 2014, 77, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lu, Y.; Sun, M.; Huang, X.; Du, X.; Jiao, Z.; Sun, F.; Xie, F. Pneumonia After Cardiovascular Surgery: Incidence, Risk Factors and Interventions. Front. Cardiovasc. Med. 2022, 9, 911878. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.; Moniz, P.; Guerreiro, G.; Póvoa, P. Airway and Respiratory Devices in the Prevention of Ventilator-Associated Pneumonia. Medicina 2023, 59, 199. [Google Scholar] [CrossRef]
- Lacherade, J.-C.; Azais, M.-A.; Pouplet, C.; Colin, G. Subglottic secretion drainage for ventilator-associated pneumonia prevention: An underused efficient measure. Ann. Transl. Med. 2018, 6, 422. [Google Scholar] [CrossRef]
- Ozcelik, B.; Ho, K.K.K.; Glattauer, V.; Willcox, M.; Kumar, N.; Thissen, H. Poly(ethylene glycol)-based coatings combining low-biofouling and quorum-sensing inhibiting properties to reduce bacterial colonization. ACS Biomater. Sci. Eng. 2017, 3, 78–87. [Google Scholar] [CrossRef]
- Merchan, M.; Sedlarikova, J.; Vesel, A.; MacHovsky, M.; Sedlarik, V.; Saha, P. Antimicrobial silver nitrate-doped polyvinyl chloride cast films: Influence of solvent on morphology and mechanical properties. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 101–108. [Google Scholar] [CrossRef]
- Mahmoodpoor, A.; Sanaie, S.; Parthvi, R.; Shadvar, K.; Hamishekar, H.; Iranpour, A.; Nuri, H.; Rahnemayan, S.; Nader, N.D. A clinical trial of silver-coated and tapered cuff plus supraglottic suctioning endotracheal tubes in preventing ventilator-associated pneumonia. J. Crit. Care 2020, 56, 171–176. [Google Scholar] [CrossRef]
- Plotniece, A.; Sobolev, A.; Supuran, C.T.; Carta, F.; Björkling, F.; Franzyk, H.; Yli-Kauhaluoma, J.; Augustyns, K.; Cos, P.; De Vooght, L.; et al. Selected strategies to fight pathogenic bacteria. J. Enzym. Inhib. Med. Chem. 2023, 38, 2155816. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, B.; Ni, D.; Sun, Y.; Wang, G.; Jiang, H. A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. J. Nanobiotechnol. 2022, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B.; Williams, A.; Chandler, S.; Benfield, S. Silver absorption and antibacterial efficacy of silver dressings. J. Wound Care 2005, 14, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Tokmaji, G.; Vermeulen, H.; Müller, M.C.A.; Kwakman, P.H.S.; Schultz, M.J.; Zaat, S.A.J. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients. Cochrane Database Syst. Rev. 2015, 2015, 12. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Afessa, B.; Anzueto, A.; Veremakis, C.; Kerr, K.M.; Margolis, B.D.; Craven, D.E.; Roberts, P.R.; Arroliga, A.C.; Hubmayr, R.D.; et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: The NASCENT randomized trial. JAMA 2008, 300, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Q.; Wang, L.; Du, L.; Deng, L. Silver-coated endotracheal tube versus non-coated endotracheal tube for preventing ventilator-associated pneumonia among adults: A systematic review of randomized controlled trials. J. Evid. Based Med. 2012, 5, 25–30. [Google Scholar] [CrossRef]
- Saeb, A.T.M.; Alshammari, A.S.; Al-Brahim, H.; Al-Rubeaan, K.A. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Sci. World J. 2014, 2014, 704708. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Das, S.S.; Khatoon, A.; Ansari, M.T.; Afzal, M.; Hasnain, S.; Nayak, A.K. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756–769. [Google Scholar] [CrossRef]
- Li, R.; Chen, J.; Cesario, T.C.; Wang, X.; Yuan, J.S.; Rentzepis, P.M. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria. Proc. Natl. Acad. Sci. USA 2016, 113, 13612–13617. [Google Scholar] [CrossRef]
- Thangavelu, L.; Adil, A.H.; Arshad, S.; Devaraj, E.; Mallineni, S.K.; Sajja, R.; Chakradhar, A.; Karobari, M.I. Antimicrobial Properties of Silver Nitrate Nanoparticle and Its Application in Endodontics and Dentistry: A Review of Literature. J. Nanomater. 2021, 2021, 9132714. [Google Scholar] [CrossRef]
- Chen, X.; Ling, X.; Liu, G.; Xiao, J. Antimicrobial Coating: Tracheal Tube Application. Int. J. Nanomed. 2022, 17, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Tolker-Nielsen, T.; Jensen, P.Ø.; Wang, H.; Høiby, N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv. Drug Deliv. Rev. 2015, 85, 7–23. [Google Scholar] [CrossRef]
- Smith, B.P.; Goldberg, A.J.; Gaughan, J.P.; Seamon, M.J. A comparison of Injury Severity Score and New Injury Severity Score after penetrating trauma: A prospective analysis. J. Trauma Acute Care Surg. 2015, 79, 269–274. [Google Scholar] [CrossRef]
- Bossers, S.M.; Schwarte, L.A.; Loer, S.A.; Twisk, J.W.R.; Boer, C.; Schober, P. Experience in prehospital endotracheal intubation significantly influences mortality of patients with severe traumatic brain injury: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0141034. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Sayes, C.M.; Guo, B.; Pillai, S.; Parsons, J.G.; Wang, C.; Yan, B.; Ma, X. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Sci. Total Environ. 2019, 653, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- De Matteis, V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 2017, 5, 29. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- AshaRani, P.V.; Mun, G.L.K.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef]
- Mietto, C.; Pinciroli, R.; Patel, N.; Berra, L. Ventilator associated pneumonia: Evolving definitions and preventive strategies. Respir. Care 2013, 58, 990–1003. [Google Scholar] [CrossRef]
- Otterbeck, A.; Skorup, P.; Hanslin, K.; Larsson, A.; Stålberg, J.; Hjelmqvist, H.; Lipcsey, M. Intravenous anti-P. aeruginosa IgY-antibodies do not decrease pulmonary bacterial concentrations in a porcine model of ventilator-associated pneumonia. J. Endotoxin Res. 2022, 28, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Filser, J. Low concentration effects and different outcome in repeated reproduction tests with silver nanoparticles, silver nitrate and Folsomia candida (Collembola). Environ. Sci. Eur. 2020, 32, 136. [Google Scholar] [CrossRef]
- Haas, C.F.; Eakin, R.M.; Konkle, M.A.; Blank, R. Endotracheal tubes: Old and new. Respir. Care 2014, 59, 933–955. [Google Scholar] [CrossRef]
- Stoclin, A.; Rotolo, F.; Hicheri, Y.; Mons, M.; Chachaty, E.; Gachot, B.; Pignon, J.-P.; Wartelle, M.; Blot, F. Ventilator-associated pneumonia and bloodstream infections in intensive care unit cancer patients: A retrospective 12-year study on 3388 prospectively monitored patients. Support. Care Cancer 2020, 28, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.A.; Boyer, T.J. Endotracheal Tube. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539747/ (accessed on 30 April 2023).
- Alves, D.; Grainha, T.; Pereira, M.O.; Lopes, S.P. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater. 2023, 158, 32–55. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.F.; Levine, S.M.; Restrepo, M.I. Technologic Advances in Endotracheal Tubes for Prevention of Ventilator-Associated Pneumonia. Chest 2012, 142, 231. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.L.; Hazelwood, K.J. Exposure-related health effects of silver and silver compounds: A review. Ann. Occup. Hyg. 2021, 49, 575–585. [Google Scholar] [CrossRef]
- Koenig, S.M.; Truwit, J.D. Ventilator-Associated Pneumonia: Diagnosis, Treatment, and Prevention. Clin. Microbiol. Rev. 2006, 19, 637. [Google Scholar] [CrossRef]
- Yamashita, B.; French, M. Chapter latent print development. Fingerpr. Sourceb. 2020, 1, 155–222. [Google Scholar]
- Poynton, H.C.; Lazorchak, J.M.; Impellitteri, C.A.; Blalock, B.J.; Rogers, K.; Allen, H.J.; Loguinov, A.; Heckman, J.L.; Govindasmawy, S. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 6288–6296. [Google Scholar] [CrossRef]
- Gamberini, L.; Tonetti, T.; Spadaro, S.; Zani, G.; Mazzoli, C.A.; Capozzi, C.; Giampalma, E.; Reggiani, M.L.B.; Bertellini, E.; Castelli, A.; et al. Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: Multicenter observational study in fifteen Italian ICUs. J. Intensive Care 2020, 8, 80. [Google Scholar] [CrossRef]
- Tortella, G.; Rubilar, O.; Durán, N.; Diez, M.; Martínez, M.; Parada, J.; Seabra, A. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 2020, 390, 121974. [Google Scholar] [CrossRef] [PubMed]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gutierrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Niño, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 2010, 6, 681–688. [Google Scholar] [CrossRef]
- Dos Santos, C.A.; Seckler, M.M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J. Pharm. Sci. 2014, 103, 1931–1944. [Google Scholar] [CrossRef] [PubMed]
- Van Charante, F.; Wieme, A.; Rigole, P.; De Canck, E.; Ostyn, L.; Grassi, L.; Deforce, D.; Crabbé, A.; Vandamme, P.; Joossens, M.; et al. Microbial diversity and antimicrobial susceptibility in endotracheal tube biofilms recovered from mechanically ventilated COVID-19 patients. Biofilm 2022, 4, 100079. [Google Scholar] [CrossRef]
- Palau, M.; Muñoz, E.; Larrosa, N.; Gomis, X.; Márquez, E.; Len, O.; Almirante, B.; Gavaldà, J. Hyperthermia Prevents In Vitro and In Vivo Biofilm Formation on Endotracheal Tubes. Microbiol. Spectr. 2023, 11, e02807-22. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, L.; Zhang, X.; Wu, R.; Liao, L.; Wei, J. Silver Nanoparticles Coated Poly(L-Lactide) Electrospun Membrane for Implant Associated Infections Prevention. Front. Pharm. 2020, 11, 431. [Google Scholar] [CrossRef]
- Angotti, L.B.; Richards, J.B.; Fisher, D.F.; Sankoff, J.D.; Seigel, T.A.; Al Ashry, H.S.; Wilcox, S.R. Duration of mechanical ventilation in the Emergency Department. West. J. Emerg. Med. 2017, 18, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Fan, E.; Rochwerg, B.; Burns, K.E.; Brochard, L.J.; Cook, D.J.; Walkey, A.J.; Ferguson, N.D.; Hough, C.L.; Brodie, D.; et al. Lung-Protective Ventilation and Associated Outcomes and Costs Among Patients Receiving Invasive Mechanical Ventilation in the ED. Chest 2021, 159, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef]
- Salwiczek, M.; Qu, Y.; Gardiner, J.; Strugnell, R.; Lithgow, T.; McLean, K.M.; Thissen, H. Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 2014, 32, 82–90. [Google Scholar] [CrossRef]
- Clark, N.J.; Boyle, D.; Eynon, B.P.; Handy, R.D. Dietary exposure to silver nitrate compared to two forms of silver nanoparticles in rainbow trout: Bioaccumulation potential with minimal physiological effects. Environ. Sci. Nano 2019, 6, 1393–1405. [Google Scholar] [CrossRef]
- Horkavcová, D.; Doubet, Q.; Lecomte-Nana, G.L.; Jablonská, E.; Helebrant, A. Development of Adhesive, Bioactive and Antibacterial Titania Sol-Gel Coating on Titanium Substrate by Dip-Coating Technique. Coatings 2021, 11, 243. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef]
- Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sa, B.; Mukherjee, S.; Roy, S.K. Effect of polymer concentration and solution pH on viscosity affecting integrity of a polysaccharide coat of compression coated tablets. Int. J. Biol. Macromol. 2019, 125, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Rey, F.; Ferreira, M.A.; Facal, P.; Machado, A.A.S.C. Effect of concentration, pH, and ionic strength on the viscosity of solutions of a soil fulvic acid. Can. J. Chem. 1996, 74, 295–299. [Google Scholar] [CrossRef]
- Lethongkam, S.; Sunghan, J.; Wangdee, C.; Durongphongtorn, S.; Siri, R.; Wunnoo, S.; Paosen, S.; Voravuthikunchai, S.P.; Dejyong, K.; Daengngam, C. Biogenic nanosilver-fabricated endotracheal tube to prevent microbial colonization in a veterinary hospital. Appl. Microbiol. Biotechnol. 2023, 107, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Abdel-Maksoud, G.; Saad, H.A.; Gobouri, A.A.; Mohammedsaleh, Z.M.; El-Sadany, M.A.H. The efficacy of silver nitrate (AgNO3) as a coating agent to protect paper against high deteriorating microbes. Catalysts 2021, 11, 310. [Google Scholar] [CrossRef]
- Bello, V.; Mattei, G.; Mazzoldi, P.; Vivenza, N.; Gasco, P.; Idee, J.M.; Robic, C.; Borsella, E. Transmission electron microscopy of lipid vesicles for drug delivery: Comparison between positive and negative staining. Microsc. Microanal. 2010, 16, 456–461. [Google Scholar] [CrossRef]
- Gebretinsae, H.G.; Tsegay, M.G.; Nuru, Z.Y. Biosynthesis of nickel oxide (NiO) nanoparticles from cactus plant extract. Mater. Today Proc. 2019, 36, 566–570. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, X. Antibacterial Mechanism of Nanosilvers. Curr. Pharm. Rep. 2019, 5, 401–409. [Google Scholar] [CrossRef]
- Eid, E.A.; Sadawy, M.M.; Reda, A.M. Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Mater. Chem. Phys. 2022, 277, 125446. [Google Scholar] [CrossRef]
- Qaeed, M.A.; Hendi, A.; Thahe, A.A.; Al-Maaqar, S.M.; Osman, A.M.; Ismail, A.; Mindil, A.; Eid, A.A.; Aqlan, F.; Al-Nahari, E.G.; et al. Effect of Different Ratios of Mentha spicata Aqueous Solution Based on a Biosolvent on the Synthesis of AgNPs for Inhibiting Bacteria. J. Nanomater. 2023, 2023, 3599501. [Google Scholar] [CrossRef]
- Tarquinio, K.M.; Kothurkar, N.K.; Goswami, D.Y.; Sanders, R.C.; Zaritsky, A.L.; LeVine, A.M. Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Nanomed. 2010, 5, 177–183. [Google Scholar] [CrossRef]
- Haidari, H.; Vasilev, K.; Cowin, A.J.; Kopecki, Z. Bacteria-Activated Dual pH- and Temperature-Responsive Hydrogel for Targeted Elimination of Infection and Improved Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 51744–51762. [Google Scholar] [CrossRef]
- Benoit, S.M.; Afizah, M.N.; Ruttarattanamongkol, K.; Rizvi, S.S.H. Effect of pH and temperature on the viscosity of texturized and commercial whey protein dispersions. Int. J. Food Prop. 2013, 16, 322–330. [Google Scholar] [CrossRef]
- Warang, A.D.; Samant, S.A. Bacteriological Profile of Endotracheal Aspirates from Patients with Lower Respiratory Tract Infections and Their Antibiotic Resistance Pattern. J. Evol. Med. Dent. Sci. 2021, 10, 352–356. [Google Scholar] [CrossRef]
- Natham, H.; Kondagadapu, S.; Kadiyala, V.; Mohan, A.; Chaudhury, A.; Samantaray, A. Bacterial Colonisation and Antibiotic Sensitivity Profile of Endotracheal Tubes in Mechanically Ventilated Patients. J. Clin. Diagn. Res. 2019, 13, 1–6. [Google Scholar] [CrossRef]
- Najafian, B.; Torkaman, M.; Shahverdi, E.; Noroozian, R. The Main Causes of Bacterial Colonization in Endotracheal Tubes and Tracheal Secretions in Neonates Admitted to the Neonatal Intensive Care Unit. Tanaffos 2017, 16, 277. Available online: https://pmc/articles/PMC5971758/ (accessed on 1 May 2023).
- Tripathi, S.; Malik, G.K.; Jain, A.; Kohli, N.; Resident, S. Study of Ventilator Associated Pneumonia in Neonatal Intensive Care Unit: Characteristics, risk factors and outcome. Internet J. Med. Update Ejournal 2010, 5, 12–19. [Google Scholar] [CrossRef]
Experiment Samples | Silver Nitrate Concentrations | Experiment Duration (Hour) | Temperature (°C) | pH Value |
---|---|---|---|---|
Sample (1) | 0.1852% | Twenty-Four | 45 | 8.5 |
Sample (2) | 0.03496% | 50 | 7 | |
Sample (3) | 0.1852% | 45 | 8 | |
Sample (4) | 0.01968% | 50 | 5 |
Experiment Samples | Viscosity Value |
---|---|
Sample (1) | 1.08 |
Sample (2) | 1.75 |
Sample (3) | 1.50 |
Sample (4) | 1.34 |
Experiments Sample | Tested Microorganisms | Microbial Count/Level of Growth Inhibition |
---|---|---|
Sample (1) | Escherichia coli | 12 CFU/µL |
Sample (2) | 3 CFU/µL | |
Sample (3) | 7 CFU/µL | |
Sample (4) | 5 CFU/µL |
Experiment Samples | SN Concentrations | SH Concentrations | Stirring Time (Min) |
---|---|---|---|
Sample (1) | 0.1852% | 5 | 62 |
Sample (2) | 0.03496% | 2.6 | 51 |
Sample (3) | 0.1852% | 4 | 62 |
Sample (4) | 0.01968% | 0.400 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sayed, M.F.; Tarek El-Wakad, M.; Hassan, M.A.; Soliman, A.M.; Eldesoky, A.S. Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study. Gels 2023, 9, 414. https://doi.org/10.3390/gels9050414
Al-Sayed MF, Tarek El-Wakad M, Hassan MA, Soliman AM, Eldesoky AS. Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study. Gels. 2023; 9(5):414. https://doi.org/10.3390/gels9050414
Chicago/Turabian StyleAl-Sayed, Manar Fathy, Mohamed Tarek El-Wakad, Mohammed A. Hassan, Ahmed M. Soliman, and Amal S. Eldesoky. 2023. "Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study" Gels 9, no. 5: 414. https://doi.org/10.3390/gels9050414
APA StyleAl-Sayed, M. F., Tarek El-Wakad, M., Hassan, M. A., Soliman, A. M., & Eldesoky, A. S. (2023). Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study. Gels, 9(5), 414. https://doi.org/10.3390/gels9050414