Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics
Abstract
:1. Introduction
2. Anticancer Agents Used in Chemotherapy
2.1. Antimetabolites
2.1.1. Inhibitors of Pyrimidine Synthesis
2.1.2. Inhibitors of Purine Synthesis
2.1.3. Folic Acid Antimetabolites
2.1.4. Antimetabolites of Urea
2.2. Chemotherapeutics, Directly Modifying the DNA Structure
2.2.1. Alkylating Agents
2.2.2. Platinum Compounds
2.3. Microtubule Inhibitors
2.3.1. Inhibitors of Microtubule Polymerization
2.3.2. Inhibitors of Microtubule Depolymerization
2.4. Antibiotics
2.4.1. Anthracyclines (Topoisomerase II Inhibitors)
2.4.2. Bleomycin
2.5. Topoisomerase I Inhibitors
3. Types of Hydrogels
3.1. Thermo-Reversible Physical Hydrogels
3.2. Irreversible Chemical Hydrogels
3.3. Biodegradability of Hydrogels
4. Nanoparticles as Carriers of Anticancer Chemotherapeutics
4.1. Metal Nanoparticles
4.2. Oxide Nanoparticles
4.3. Choice of Nanoparticles as Carriers of Anticancer Chemotherapeutics
5. Cytotoxicity of Nanoparticles
5.1. Direct Mechanical Interaction
5.2. Free Radicals Generation and Oxidative Stress
5.3. Disruption of the Cell Communication
5.4. Heavy Metal Ions Release
5.5. In Situ Generation of Oxygen (O2) Nanobubbles
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- DeVita, V.T., Jr.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef]
- Alfarouk, K.O.; Stock, C.M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; et al. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 2015, 15, 71. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef]
- Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control Release 2012, 159, 14–26. [Google Scholar] [CrossRef]
- Fahr, A.; Liu, X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin. Drug Deliv. 2007, 4, 403–416. [Google Scholar] [CrossRef]
- Yolles, S.; Leafe, T.D.; Meyer, F.J. Timed—Release depot for anticancer agents. J. Pharm. Sci. 1975, 64, 115–116. [Google Scholar] [CrossRef]
- Orive, G.; Hernández, R.M.; Gascón, A.R.; Pedraz, J.L. Micro and nano drug delivery systems in cancer therapy. Cancer Ther. 2005, 3, 131–138. [Google Scholar]
- Hristova, S.H.; Zhivkov, A.M. Montmorillonite colloid plates with adsorbed cytochrome c: In vitro cytotoxic effect on colon cancer cell culture. Cancer Nanotechnol. 2021, 12, 23. [Google Scholar] [CrossRef]
- Hristova, S.H.; Zhivkov, A.M. Protein–Mineral Composite Particles with Logarithmic Dependence of Anticancer Cytotoxicity on Concentration of Montmorillonite Nanoplates with Adsorbed Cytochrome c. Pharmaceutics 2023, 15, 386. [Google Scholar] [CrossRef]
- Benkhaya, S.; M'rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Zhao, H.; Javed, B.; Tian, F.; Liu, K. Hydrogel on a smart nanomaterial interface to carry theraupetics for digitalized glioma threatment. Gels 2022, 8, 664. [Google Scholar] [CrossRef]
- Jiang, Y.; Krishnan, N.; Heo, J.; Fang, R.H.; Zhang, L. Nanoparticle–hydrogel superstructures for biomedical applications. J. Control Release 2020, 324, 505–521. [Google Scholar] [CrossRef]
- Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med. 2009, 234, 123–131. [Google Scholar] [CrossRef]
- Cattel, L.; Ceruti, M.; Dosio, F. From conventional to stealth liposomes a new frontier in cancer chemotherapy. Tumori J. 2003, 89, 237–249. [Google Scholar] [CrossRef]
- Gu, D.; O’Connor, A.J.; Qiao, G.G.H.; Ladewig, K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin. Drug Deliv. 2017, 14, 879–895. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci. 2010, 10, 563–579. [Google Scholar] [CrossRef]
- Du, W.; Zong, Q.; Guo, R.; Ling, G.; Zhang, P. Injectable nanocomposite hydrogels for cancer therapy. Macromol. Biosci. 2021, 21, e2100186. [Google Scholar] [CrossRef]
- Kelland, L.R.; Clarke, S.J.; McKeage, M.J. Advances in platinum complex cancer chemotherapy. Platin. Met. Rev. 1992, 36, 178–184. [Google Scholar]
- Elstad, N.L.; Fowers, K.D. OncoGel (ReGel/paclitaxel)—Clinical applications for a novel paclitaxel delivery system. Adv. Drug Deliv. Rev. 2009, 61, 785–794. [Google Scholar] [CrossRef]
- Bajaj, G.; Kim, M.R.; Mohammed, S.I.; Yeo, Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Control Release 2012, 158, 386–392. [Google Scholar] [CrossRef]
- Utech, S.; Boccaccini, A.R. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J. Mater. Sci. 2016, 51, 271–310. [Google Scholar] [CrossRef]
- Favre, E.; Leonard, M.; Laurent, A.; Dellacherie, E. Diffusion of polyethyleneglycols in calcium alginate hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2001, 194, 197–206. [Google Scholar] [CrossRef]
- Bock, N.; Dargaville, T.R.; Woodruff, M.A. Electrospraying of polymers with therapeutic molecules: State of the art. Prog. Polym. Sci. 2012, 37, 1510–1551. [Google Scholar] [CrossRef]
- Ma, G.; Lin, W.; Yuan, Z.; Wu, J.; Qian, H.; Xu, L.; Chen, S. Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed l-glutamic acid and l-lysine polypeptide for site-specific drug delivery. J. Mater. Chem. B 2017, 5, 935–943. [Google Scholar] [CrossRef]
- Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007, 7, 3305–3314. [Google Scholar] [CrossRef]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef]
- Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L.H.; Mahmoudi, M.; Rahman, M.; Mahmoudi, M. Nanoparticle and protein corona. Protein-Nanopart. Interact. Bio-Nano Interface 2013, 15, 21–44. [Google Scholar]
- Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K.A. Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Laurent, S.; Aghaie, A.; Rezaee, F.; Mahmoudi, M. Personalized protein coronas: A “key” factor at the nanobiointerface. Biomater. Sci. 2014, 2, 1210–1221. [Google Scholar] [CrossRef]
- Corbo, C.; Molinaro, R.; Tabatabaei, M.; Farokhzad, O.C.; Mahmoudi, M. Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci. 2017, 5, 378–387. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Raheb, J.; Akhavan, O.; Arjmand, S.; Mashinchian, O.; Rahman, M.; Mahmoudi, M. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 2015, 7, 8978–8994. [Google Scholar] [CrossRef]
- Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as drug delivery systems: A review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. [Google Scholar] [CrossRef]
- Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta 2011, 85, 2265–2289. [Google Scholar] [CrossRef]
- Tian, H.; Cronstein, B.N. Understanding the mechanisms of action of methotrexate. Bull. NYU Hosp. Jt. Dis. 2007, 65, 168–173. [Google Scholar]
- Alvarez-Figueroa, M.J.; Delgado-Charro, M.B.; Blanco-Mendez, J. Passive and iontophoretic transdermal penetration of methotrexate. Int. J. Pharm. 2001, 212, 101–107. [Google Scholar] [CrossRef]
- Mioduszewska, K.; Dołżonek, J.; Wyrzykowski, D.; Kubik, Ł.; Wiczling, P.; Sikorska, C.; Toński, M.; Kaczyński, Z.; Stepnowski, P.; Białk-Bielińska, A. Overview of experimental and computational methods for the determination of the pKa values of 5-fluorouracil, cyclophosphamide, ifosfamide, imatinib and methotrexate. TrAC Trends Anal. Chem. 2017, 97, 283–296. [Google Scholar] [CrossRef]
- Liu, L.F.; Desai, S.D.; Li, T.K.; Mao, Y.; Sun, M.; Sim, S.P. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 2000, 922, 1–10. [Google Scholar] [CrossRef]
- Adams, D.J.; Morgan, L.R. Tumor physiology and charge dynamics of anticancer drugs: Implications for camptothecin-based drug development. Curr. Med. Chem. 2011, 18, 1367–1372. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Berners-Price, S.J.; Frenkiel, T.A.; Frey, U.; Ranford, J.D.; Sadler, P.J. Hydrolysis products of cisplatin: P K a determinations via [1 H, 15 N] NMR spectroscopy. J. Chem. Soc. Chem. Commun. 1992, 10, 789–791. [Google Scholar] [CrossRef]
- Gigant, B.; Wang, C.; Ravelli, R.B.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature 2005, 435, 519–522. [Google Scholar] [CrossRef]
- Zhou, X.J.; Martin, M.; Placidi, M.; Cano, J.P.; Rahmani, R. In vivo and in vitro pharmacokinetics and metabolism of vincaalkaloids in rat. II. Vinblastine and vincristine. Eur. J. Drug Metab. Pharmacokinet. 1990, 15, 323–332. [Google Scholar] [CrossRef]
- McKay, D.B.; Burkman, A.M. Nicotinic and nonnicotinic receptor-mediated actions of vinblastine. Proc. Soc. Exp. Biol. Med. 1993, 203, 372–376. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 2009, 109, 2880–2893. [Google Scholar] [CrossRef]
- Justyna, W.; Nowacki, A.; Liberek, B. 5-fluorouracil—Complete insight into its neutral and ionised forms. Molecules 2019, 24, 3683. [Google Scholar]
- Zheng, H.; Huang, Z.; Che, S. Mesostructured chitosan–silica hybrid as a biodegradable carrier for a pH-responsive drug delivery system. Dalton Trans. 2012, 41, 5038–5044. [Google Scholar] [CrossRef]
- Hecht, S.M. (Ed.) Bleomycin: Chemical, Biochemical, and Biological Aspects, Proceedings of the a Joint US-Japan Symposium Held at the East-West Center, Honolulu, HI, USA, 18–22 July 1978; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef]
- Cai, X.; Yang, Q.; Weng, Q.; Wang, S. pH sensitive doxorubicin-loaded nanoparticle based on Radix pseudostellariae protein-polysaccharide conjugate and its improvement on HepG2 cellular uptake of doxorubicin. Food Chem. Toxicol. 2020, 136, 111099. [Google Scholar] [CrossRef]
- Lei, M.; Chen, G.; Zhang, M.; Lei, J.; Li, T.; Li, D.; Zheng, H. A pH-sensitive drug delivery system based on hyaluronic acid co-deliver doxorubicin and aminoferrocene for the combined application of chemotherapy and chemodynamic therapy. Colloids Surf. B Biointerfaces 2021, 203, 111750. [Google Scholar] [CrossRef]
- Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192. [Google Scholar] [CrossRef]
- Seo, K.; Chung, S.W.; Byun, Y.; Kim, D. Paclitaxel loaded nano-aggregates based on pH sensitive polyaspartamide amphiphilic graft copolymers. Int. J. Pharm. 2012, 424, 26–32. [Google Scholar] [CrossRef]
- Li, F.; Wu, H.; Zhang, H.; Li, F.; Gu, C.-H.; Yang, Q. Antitumor drug Paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohydr. Polym. 2009, 77, 773–778. [Google Scholar] [CrossRef]
- Shah, A.K.; Wyandt, C.M.; Stodghill, S.P. Physico chemical characterization of a novel anti-cancer agent and its comparison to Taxol®. Drug Dev. Ind. Pharm. 2013, 39, 89–101. [Google Scholar] [CrossRef]
- Chang, M.; Lu, S.; Zhang, F.; Zuo, T.; Guan, Y.; Wei, T.; Shao, W.; Lin, G. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf. B Biointerfaces 2015, 129, 175–182. [Google Scholar] [CrossRef]
- Sohail, M.F.; Rehman, M.; Sarwar, H.S.; Naveed, S.; Salman, O.; Bukhari, N.I.; Hussain, I.; Webster, T.J.; Shahnaz, G. Advancements in the oral delivery of Docetaxel: Challenges, current state-of-the-art and future trends. Int. J. Nanomed. 2018, 13, 3145. [Google Scholar] [CrossRef]
- Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol. 1992, 43, 329–339. [Google Scholar] [CrossRef]
- Sahasranaman, S.; Howard, D.; Roy, S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur. J. Clin. Pharmacol. 2008, 64, 753–767. [Google Scholar] [CrossRef]
- Weinshilboum, R.M.; Sladek, S.L. Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 1980, 32, 651–662. [Google Scholar]
- Saffhill, R.; Margison, G.P.; O’Connor, P.J. Mechanisms of carcinogenesis induced by alkylating agents. Biochim. Biophys. Acta (BBA)-Rev. Cancer 1985, 823, 111–145. [Google Scholar] [CrossRef]
- Bagley, C.M., Jr.; Bostick, F.W.; DeVita, V.T., Jr. Clinical pharmacology of cyclophosphamide. Cancer Res. 1973, 33, 226–233. [Google Scholar]
- Yarbro, J.W. Mechanism of action of hydroxyurea. Semin. Oncol. 1992, 19, 1–10. [Google Scholar]
- Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 1997, 13, 83–117. [Google Scholar] [CrossRef]
- Walczak, C.E.; Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 2008, 265, 111–158. [Google Scholar] [CrossRef]
- Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Kashyap, N.; Kumar, N.; Kumar, M.N.V.R. Hydrogels for Pharmaceutical and Biomedical Applications. Crit. Rev. Ther. Drug Carr. Syst. 2005, 22, 107–150. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R.F. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J. Funct. Biomater. 2018, 9, 13. [Google Scholar]
- Rafikov, S.R.; Budtov, V.P.; Monakov, Y.B. Introduction in the Physical Chemistry of Polymers; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Tenford, C. Physical Chemistry of Polymers; Himiya: Moscow, Russia, 1965. [Google Scholar]
- Ta, H.T.; Dass, C.R.; Dunstan, D.E. Injectable chitosan hydrogels for localised cancer therapy. J. Control Release 2008, 126, 205–216. [Google Scholar] [CrossRef]
- Klouda, L.; Mikos, A.G. Thermosensitive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68, 34–45. [Google Scholar] [CrossRef]
- Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today 2016, 21, 1835–1849. [Google Scholar] [CrossRef]
- Graham, S.; Marina, P.F.; Blencowe, A. Thermoresponsive polysaccarides and their thermoriversible physical hydrogel networks. Carbohydr. Polym. 2019, 207, 143–159. [Google Scholar] [CrossRef]
- Kojima, H. Studies on the gel transition and aqueous solutions of thermosensitive polymers. Polym. J. 2018, 50, 411–418. [Google Scholar] [CrossRef]
- Zhivkova, I.V.; Zhivkov, A.M.; Stoychev, D.S. Electrostatic behaviour of polyethylene oxide. Eur. Polym. J. 1998, 34, 531–538. [Google Scholar]
- Bekturov, E.A.; Bakaunova, Z.K. Synthetic Water-Soluble Polymers in Solutions; Nauka: Alma-Ata, Kazakh SSR, 1981. [Google Scholar]
- Xin, H.; Nafisy, S. Drug delivery based on stimuli-responsive injectable hydrogels for breast cancer therapy: A review. Gels 2022, 8, 45. [Google Scholar] [CrossRef]
- Kwon, S.S.; Kong, B.J.; Park, S.N. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur. J. Pharm. Biopharm. 2015, 92, 146–154. [Google Scholar] [CrossRef]
- Singh, N.K.; Lee, D.S. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control Release 2014, 193, 214–227. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Park, D.K.; Lee, D.S. Injectable poly(amidoamine)-poly(ethylene glycol)-poly(amidoamine) triblock copolymer hydrogel with dual sensitivities: pH and temperature. Biomacromolecules 2009, 10, 728–731. [Google Scholar] [CrossRef]
- Patrickios, C.S.; Georgiou, T.K. Covalent amphiphilic polymer networks. Curr. Opin. Colloid Interface Sci. 2003, 8, 76–85. [Google Scholar] [CrossRef]
- Rikkou-Kalourkoti, M.; Kitiri, E.N.; Patrickios, C.S.; Leontidis, E.; Constantinou, M.; Constantinides, G.; Zhang, X.; Papadakis, C.M. Double networks based on amphiphilic cross-linked star block copolymer first conetworks and randomly cross-linked hydrophilic second networks. Macromolecules 2016, 49, 1731–1742. [Google Scholar] [CrossRef]
- Swarnalatha, S.; Gopi, R.; Ganesh Kumar, A.; Selvi, P.K.; Sekaran, G. A novel amphiphilic nano hydrogel using ketene based polyester with polyacrylamide for controlled drug delivery system. J. Mater. Sci. Mater. Med. 2008, 19, 3005–3014. [Google Scholar] [CrossRef]
- Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 1993, 11, 59–84. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Adhikari, R.; Gadegaard, N. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef]
- Hyun, H.; Kim, Y.H.; Song, I.B.; Lee, J.W.; Kim, M.S.; Khang, G.; Park, K.; Lee, H.B. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules 2007, 8, 1093–1100. [Google Scholar] [CrossRef]
- Ranucci, E.; Spagnoli, G.; Ferruti, P.; Sgouras, D.; Duncan, R. Poly (amidoamine) s with potential as drug carriers: Degradation and cellular toxicity. J. Biomater. Sci. Polym. Ed. 1991, 2, 303–315. [Google Scholar] [CrossRef]
- Zhong, S.P.; Campoccia, D.; Doherty, P.J.; Williams, R.L.; Benedetti, L.; Williams, D.F. Biodegradation of hyaluronic acid derivatives by hyaluronidase. Biomaterials 1994, 15, 359–365. [Google Scholar] [CrossRef]
- Matica, A.; Menghiu, G.; Ostafe, V. Biodegradability of chitosan based products. New Front. Chem. 2017, 26, 75–86. [Google Scholar]
- Alimirzaei, F.; Vasheghani-Farahani, E.; Ghiaseddin, A.; Soleimani, M. pH-Sensitive Chitosan Hydrogel with Instant Gelation for Myocardial Regeneration. J. Tissue Sci. Eng. 2017, 8, 3. [Google Scholar]
- Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol. 2001, 5, 447–451. [Google Scholar] [CrossRef]
- Lyklema, H. Fundamentals of Interface and Colloid Science. Particulate Colloids; Elsevier: Amsterdam, The Netherlands, 2005; Volume IV. [Google Scholar]
- Lyclema, H. Fundamentals of Interface and Colloid Science. Soft Colloids; Elsevier: Amsterdam, The Netherlands, 2005; Volume V. [Google Scholar]
- Lyklema, H. Fundamentals of Interface and Colloid Science. Solid-Liquid Interphaces; Academic Press: London, UK, 2001; Volume II. [Google Scholar]
- Lyklema, H. The structure of the electrical double layer on porous surfaces. J. Electroanal. Chem. 1969, 18, 341–348. [Google Scholar] [CrossRef]
- Tadros, T.F.; Lyklema, H. Adsorption of potential-determining ions at the silica-aqueous electrolyte interfacea and the roleof some catioons. J. Electroanal. Chem. 1968, 17, 267–275. [Google Scholar] [CrossRef]
- van der Zande, B.M.I.; Böhmer, M.R.; Fokkink, L.G.J.; Schönenberger, C. Aqueous Gold Sols of Rod-Shaped Particles. J. Phis. Chem. 1997, 101, 852–854. [Google Scholar] [CrossRef]
- van der Zande, B.M.I. Colloidal Dispertions of Gold Rods. Ph.D. Thesis, Utreht University, Utreht, The Netherlands, 1998. [Google Scholar]
- Goodwin, J. Colloids and Interfaces with Surfacrants and Polymers; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Eck, D.; Helm, C.A.; Wagner, N.J.; Vaynberg, K.A. Plasmon Resonance Measurements of the Adsorption and Adsorption Kinetics of a Biopolymer onto Gold Nanocolloids. Langmuir 2001, 17, 957–960. [Google Scholar] [CrossRef]
- Shipway, N.A.; Lahav, M.; Gabai, R.; Willner, I. Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles. Langmuir 2000, 16, 8789–8795. [Google Scholar] [CrossRef]
- Cumberland, S.L.; Strouse, G.F. Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces. Langmuir 2002, 18, 269–276. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, D.; Cai, Y.; Ji, X.; Xie, R.; Yang, W. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 2012, 4, 5071. [Google Scholar] [CrossRef]
- Prime, K.L.; Whitesides, G.M. Self-assembled organic monolayers: Model systems for studing adsorption of proteins at surfaces. Science 1991, 252, 1164–1167. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.M.; Tavallaie, R.; Sandiford, L.; Tilley, R.D.; Gooding, J. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem. Commun. 2016, 52, 7528–7540. [Google Scholar] [CrossRef]
- Dykman, L.A.; Khlebtsov, N.G. Gold Nanoparticles in Biomedical Applications; CRS Press: Boca Raton, FL, USA, 2018; p. 331. [Google Scholar]
- Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medcine. Acta Nat. 2011, 3, 36–58. [Google Scholar]
- Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Rev. 2009, 38, 1759–1782. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.A.; Bogatyrev, V.A.; Shhegolev, S.Y.; Xlebcov, N.G. Gold Nanoparticles: Synthesis, Properties, Biomedical Applications; Nauka: Moscow, Russia, 2008; p. 319. [Google Scholar]
- Ramalingam, V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv. Colloid Interface Sci. 2019, 271, 101989. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv. 2020, 2, 3764–3787. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Rahme, K.; He, Y.; Li, L.L.; Holmes, J.D.; O’Driscoll, C.M. Gold nanoparticles enlighten the future of cancer theranostics. Intern. J. Nanomed. 2017, 12, 6131–6152. [Google Scholar] [CrossRef]
- Hoskins, C.; Min, Y.; Gueorguieva, M.; McDougall, C.; Volovick, A.; Prentice, P.; Wang, Z.; Melzer, A.; Cuschieri, A.; Wang, L. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J. Nanobiotechnol. 2012, 10, 27. [Google Scholar] [CrossRef]
- Barnett, C.M.; Gueorguieva, M.; Lees, M.R.; McGarvey, D.J.; Darton, R.J.; Hoskins, C. Effect of hybrid composition on the physicochemical properties and morphology of iron oxide-gold nanoparticles. J. Nanopart. Res. 2012, 14, 1170. [Google Scholar] [CrossRef]
- Barnett, C.M.; Gueorguieva, M.; Lees, M.R.; Mc Garvey, D.J.; Hoskins, C. Physical stability, biocompatibility and potential use of hybrid iron oxide-gold nanoparticles as drug carriers. J. Nanopart. Res. 2013, 15, 1706. [Google Scholar] [CrossRef]
- Capanema, N.S.; Carvalho, I.C.; Mansur, A.A.; Carvalho, S.M.; Lage, A.P.; Mansur, H.S. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl. Nano Mater. 2019, 2, 7393–7408. [Google Scholar] [CrossRef]
- Reddy, P.R.S.; Rao, K.M.; Rao, K.K.; Shchipunov, Y.; Ha, C.S. Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications. Macromol. Res. 2014, 22, 832–842. [Google Scholar] [CrossRef]
- El-Arnaouty, M.B.; Eid, M.; Mansour, H.H. In vivo study of silver nanoparticles entrapped poly (N-vinyl pyrrolidone/dextran) hydrogel synthesized by gamma radiation on the antitumor activity of doxorubicin. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2700–2710. [Google Scholar] [CrossRef]
- Nagaraja, K.; Rao, K.M.; Hemalatha, D.; Zo, S.; Han, S.S.; Rao, K.K. Strychnos potatorum L. Seed Polysaccharide-Based Stimuli-Responsive Hydrogels and Their Silver Nanocomposites for the Controlled Release of Chemotherapeutics and Antimicrobial Applications. ACS Omega 2022, 7, 12856–12869. [Google Scholar] [CrossRef]
- Bardajee, G.R.; Mizani, F.; Hosseini, S.S. pH sensitive release of doxorubicin anticancer drug from gold nanocomposite hydrogel based on poly (acrylic acid) grafted onto salep biopolymer. J. Polym. Res. 2017, 24, 1–13. [Google Scholar] [CrossRef]
- Li, T.; Zhang, M.; Wang, J.; Wang, T.; Yao, Y.; Zhang, X.; Zhang, C.; Zhang, N. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J. 2016, 18, 146–155. [Google Scholar] [CrossRef]
- Ischakov, R.; Adler-Abramovich, L.; Buzhansky, L.; Shekhter, T.; Gazit, E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorg. Med. Chem. 2013, 21, 3517–3522. [Google Scholar] [CrossRef]
- Strong, L.E.; Dahotre, S.N.; West, J.L. Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J. Control Release 2014, 178, 63–68. [Google Scholar] [CrossRef]
- Wan, J.; Geng, S.; Zhao, H.; Peng, X.; Xu, J.; Wei, M.; Mao, J.; Zhou, Y.; Zhu, Q.; Zhao, Y.; et al. Precise synchronization of hyperthermia–chemotherapy: Photothermally induced on-demand release from injectable hydrogels of gold nanocages. Nanoscale 2018, 10, 20020–20032. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, X.; Zhang, X.; Qu, D.; Xue, L.; Mo, R.; Zhang, C. Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal–chemotherapy. Int. J. Pharm. 2016, 497, 210–221. [Google Scholar] [CrossRef]
- Mirrahimi, M.; Beik, J.; Mirrahimi, M.; Alamzadeh, Z.; Teymouri, S.; Mahabadi, V.P.; Eslahi, N.; Tazehmahalleh, F.E.; Ghaznavi, H.; Shakeri-Zadeh, A.; et al. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int. J. Biol. Macromol. 2020, 158, 617–626. [Google Scholar] [CrossRef]
- Keshavarz, M.; Moloudi, K.; Paydar, R.; Abed, Z.; Beik, J.; Ghaznavi, H.; Shakeri-Zadeh, A. Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J. Biomater. Appl. 2018, 33, 161–169. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Wang, T.X.; Liu, W.; Wang, C.D.; Wang, D.; Shang, T.; Shen, L.H.; Ren, L. Multifunctional Au@ IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J. Mater. Chem. 2011, 21, 7240–7247. [Google Scholar] [CrossRef]
- Davies, J.A.; James, R.O.; Leckie, J.O. Surface ionization and complexationat the oside/water interface. J. Colloid Interface Sci. 1978, 63, 480–499. [Google Scholar] [CrossRef]
- Davies, J.A.; Leckie, J.O. Adsorption of anions. J. Colloid Interface Sci. 1980, 74, 32–43. [Google Scholar]
- Sidorova, M.; Golub, T.; Musabekov, K. Electrokinetic and adsorption properties of SiO2 in polymer and surfactant solutions. Adv. Colloid Interface Sci. 1993, 43, 1–15. [Google Scholar] [CrossRef]
- Kokunešoski, M.; Gulicovski, J.; Matović, B.; Logar, M.; Milonjić, S.; Babić, B. Synthesis and surface characterization of ordered mesoporous silica SBA-15. Mater. Chem. Phys. 2010, 124, 1248–1252. [Google Scholar] [CrossRef]
- Mahmoud, Z.H.; Khudeer, R.F. Spectroscopy and structural study of oxidative degradation Congo Red Dye under sunlight using TiO2/Cr2O3-CdS nanocomposite. Int. J. Chemtech Res. 2019, 12, 64–71. [Google Scholar] [CrossRef]
- Castro, R.H.; Pereira, G.J.; Gouvea, D. Surface modification of SnO2 nanoparticles containing Mg or Fe: Effects on sintering. Appl. Surf. Sci. 2007, 253, 4581–4585. [Google Scholar] [CrossRef]
- Lee, H.H.; Yamaoka, S.; Murayama, N.; Shibata, J. Dispersion of Fe3O4 suspensions using sodium dodecylbenzene sulphonate as dispersant. Mater. Lett. 2007, 61, 3974–3977. [Google Scholar] [CrossRef]
- Watanabe, H.; Seto, J.E. The point of zero charge and the isoelectric point of γ-Fe2O3 and α-Fe2O3. Bull. Chem. Soc. Jpn. 1986, 59, 2683–2687. [Google Scholar] [CrossRef]
- Tschapek, M.; Wasowski, C.; Sanchez, R.T. The pzc and iep of γ-Al2O3 and TiO2. J. Electroanal. Chem. Interfacial Electrochem. 1976, 74, 167–176. [Google Scholar] [CrossRef]
- Chang, H.; Jwo, C.S.; Lo, C.H.; Tsung, T.T.; Kao, M.J.; Lin, H.M. Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci. 2005, 10, 128–132. [Google Scholar]
- Yamada, T.; Katsumata, K.I.; Matsushita, N.; Okada, K. Porous ZrO 2 sheets synthesized using an ionothermal method and their absorption properties. Dalton Trans. 2015, 44, 8247–8254. [Google Scholar] [CrossRef]
- Baalousha, M.; Ju-Nam, Y.; Cole, P.A.; Hriljac, J.A.; Jones, I.P.; Tyler, C.R.; Stone, V.; Fernandes, T.F.; Jepson, M.A.; Lead, J.R. Characterization of cerium oxide nanoparticles—Part 2: Nonsize measurements. Environ. Toxicol. Chem. 2012, 31, 994–1003. [Google Scholar] [CrossRef]
- Zhivkov, A.M.; Hristov, R.P. Polymer concentration dependence of kilohertz electric polarizability of alumina colloid particles with adsorbed carboxymethyl cellulose. J. Phys. Condens. Matter. 2010, 22, 494112. [Google Scholar] [CrossRef]
- Reyes Bahena, J.L.; Robledo Cabrera, A.; López Valdivieso, A.; Herrera Urbina, R. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina–aqueous electrolyte interface. Sep. Sci. Technol. 2002, 37, 1973–1987. [Google Scholar] [CrossRef]
- Taira, S.; Kitajima, K.; Katayanagi, H.; Ichiishi, E.; Ichiyanagi, Y. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications. Sci. Technol. Adv. Mater. 2009, 10, 034602. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Mozaffari, S.A.; Ebrahimi, F. Porous 3D-graphene functionalized with MnO2 nanospheres and NiO nanoparticles as highly efficient electrodes for asymmetric capacitive deionization: Evaluation by impedance-derived capacitance spectroscopy. Electrochim. Acta 2022, 427, 140844. [Google Scholar] [CrossRef]
- Marsalek, R. Particle size and zeta potential of ZnO. APCBEE Procedia 2014, 9, 13–17. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Xie, J.; Wang, S.; Cao, Y. A solid-state chemical method for synthesizing MgO nanoparticles with superior adsorption properties. RSC Adv. 2019, 9, 2011–2017. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, R.; Derakhshankhah, H.; Haghshenas, B.; Massoumi, B.; Abbasian, M.; Jaymand, M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol. 2020, 156, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Massoumi, B.; Mozaffari, Z.; Jaymand, M. A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int. J. Biol. Macromol. 2018, 117, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, Z.; Hatamzadeh, M.; Massoumi, B.; Jaymand, M. Synthesis and characterization of a novel stimuli—Responsive magnetite nanohydrogel based on poly (ethylene glycol) and poly (N-isopropylacrylamide) as drug carrier. J. Appl. Polym. Sci. 2018, 135, 46657. [Google Scholar] [CrossRef]
- Massoumi, B.; Mossavi, R.; Motamedi, S.; Derakhshankhah, H.; Vandghanooni, S.; Jaymand, M. Fabrication of a dual stimuli-responsive magnetic nanohydrogel for delivery of anticancer drugs. Drug Dev. Ind. Pharm. 2021, 47, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Poorgholy, N.; Massoumi, B.; Ghorbani, M.; Jaymand, M.; Hamishehkar, H. Intelligent anticancer drug delivery performances of two poly (N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev. Ind. Pharm. 2018, 44, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Ghamkhari, A.; Ghorbani, M.; Aghbolaghi, S. A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 3), 911–921. [Google Scholar] [CrossRef]
- Polat, T.G.; Topel, S.D. pH-responsive carboxymethyl cellulose conjugated superparamagnetic iron oxide nanocarriers. J. Sci. Perspect. 2019, 3, 99–110. [Google Scholar]
- Chiang, W.H.; Huang, W.C.; Chang, C.W.; Shen, M.Y.; Shih, Z.F.; Huang, Y.F.; Lin, S.C.; Chiu, H.C. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J. Control Release 2013, 168, 280–288. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Foy, S.P.; Jain, T.K.; Labhasetwar, V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res. 2010, 27, 2283–2295. [Google Scholar] [CrossRef]
- Kim, C.; Kim, H.; Park, H.; Lee, K.Y. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr. Polym. 2019, 223, 115045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Lin, P.Y.; Hsieh, S.L.; Kirankumar, R.; Lin, H.Y.; Li, J.H.; Chen, Y.T.; Wu, H.M.; Hsieh, S. Utilizing edible agar as a carrier for dual functional doxorubicin-Fe3O4 nanotherapy drugs. Materials 2021, 14, 1824. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Sakamoto, W.; Yogo, T. Smart ferrofluid with quick gel transformation in tumors for MRI--guided local magnetic thermochemotherapy. Adv. Funct. Mater. 2016, 26, 1708–1718. [Google Scholar] [CrossRef]
- Murali, R.; Vidhya, P.; Thanikaivelan, P. Thermoresponsive magnetic nanoparticle–aminated guar gum hydrogel system for sustained release of doxorubicin hydrochloride. Carbohydr. Polym. 2014, 110, 440–445. [Google Scholar] [CrossRef]
- Ehteshamzadeh, T.; Kakaei, S.; Ghaffari, M.; Khanchi, A.R. Doxorubicin Embedded Polyvinylpyrrolidone-Coated Fe3O4 Nanoparticles for Targeted Drug Delivery System. J. Supercond. Nov. Magn. 2021, 34, 3345–3360. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chiang, W.H.; Huang, W.C.; Chen, H.H.; Shen, M.Y.; Lin, S.C.; Chern, C.S.; Chiu, H.C. pH-responsive hierarchical transformation of charged lipid assemblies within polyelectrolyte gel layers with applications for controlled drug release and MR imaging contrast. J. Mater. Chem. B 2014, 2, 4988–4992. [Google Scholar] [CrossRef]
- Kim, D.I.; Lee, H.; Kwon, S.H.; Choi, H.; Park, S. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sens. Actuators B Chem. 2019, 289, 65–77. [Google Scholar] [CrossRef]
- Barkhordari, S.; Alizadeh, A.; Yadollahi, M.; Namazi, H. One-pot synthesis of magnetic chitosan/iron oxide bio-nanocomposite hydrogel beads as drug delivery systems. Soft Mater. 2021, 19, 373–381. [Google Scholar] [CrossRef]
- He, L.; Zheng, R.; Min, J.; Lu, F.; Wu, C.; Zhi, Y.; Shan, S.; Su, H. Preparation of magnetic microgels based on dextran for stimuli-responsive release of doxorubicin. J. Magn. Magn. Mater. 2021, 517, 167394. [Google Scholar] [CrossRef]
- Meenach, S.A.; Otu, C.G.; Anderson, K.W.; Hilt, J.Z. Controlled synergistic delivery of paclitaxel and heat from poly (β-amino ester)/iron oxide-based hydrogel nanocomposites. Int. J. Pharm. 2012, 427, 177–184. [Google Scholar] [CrossRef]
- Meenach, S.A.; Shapiro, J.M.; Hilt, J.Z.; Anderson, K.W. Characterization of PEG–iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J. Biomater. Sci. Polym. Ed. 2013, 24, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.; Doğaç, Y.İ. An application of CoFe2O4/alginate magnetic beads: Drug delivery system of 5-fluorouracil. Int. J. Second. Metab. 2022, 9, 305–319. [Google Scholar] [CrossRef]
- Amini-Fazl, M.S.; Mohammadi, R.; Kheiri, K. 5 Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int. J. Biol. Macromol. 2019, 132, 506–513. [Google Scholar] [CrossRef]
- Qing, W.; Wang, Y.; Li, H.; Zhu, J.; Liu, X. Hydrogels generated by low-molecular-weight PEGylated luteolin and α-cyclodextrin through self-assembly for 5-fluorouracil delivery. RSC Adv. 2016, 6, 95812–95817. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Raghavendra, G.M.; Varaprasad, K.; Raju, K.M.; Sadiku, E.R.; Kim, J. 5--Fluorouracil encapsulated magnetic nanohydrogels for drug--delivery applications. J. Appl. Polym. Sci. 2016, 133, 43921. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Divya, P.L.; Nima, J. Synthesis and characterization of silane coated magnetic nanoparticles/glycidylmethacrylate-grafted-maleated cyclodextrin composite hydrogel as a drug carrier for the controlled delivery of 5-fluorouracil. Mater. Sci. Eng. C 2015, 55, 471–481. [Google Scholar] [CrossRef]
- Gholamali, I.; Yadollahi, M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int. J. Biol. Macromol. 2020, 160, 724–735. [Google Scholar] [CrossRef]
- Gholamali, I.; Hosseini, S.N.; Alipour, E. Doxorubicin-loaded oxidized starch/poly (vinyl alcohol)/CuO bio-nanocomposite hydrogels as an anticancer drug carrier agent. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 967–980. [Google Scholar] [CrossRef]
- Shahzadi, I.; Islam, M.; Saeed, H.; Haider, A.; Shahzadi, A.; Haider, J.; Ahmed, N.; Ul-Hamid, A.; Nabgan, W.; Ikram, M.; et al. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int. J. Biol. Macromol. 2022, 220, 1277–1286. [Google Scholar] [CrossRef]
- Kozlovskaya, V.; Chen, J.; Tedjo, C.; Liang, X.; Campos-Gomez, J.; Oh, J.; Saeed, M.; Lungu, C.T.; Kharlampieva, E. pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. J. Mater. Chem. B 2014, 2, 2494–2507. [Google Scholar] [CrossRef]
- Silveira, C.P.; Apolinario, L.M.; Favaro, W.J.; Paula, A.J.; Duran, N. Doxorubicin-functionalized silica nanoparticles incorporated into a thermoreversible hydrogel and intraperitoneally administered result in high prostate antitumor activity and reduced cardiotoxicity of doxorubicin. ACS Biomater. Sci. Eng. 2016, 2, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, M.; Han, Y.; Lai, J.; Chen, J. Multistage-targeted gold/mesoporous silica nanocomposite hydrogel as in situ injectable drug release system for chemophotothermal synergistic cancer therapy. ACS Appl. Bio Mater. 2019, 3, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Criado-Gonzalez, M.; Adam, A.; Bizeau, J.; Mélart, C.; Carvalho, A.; Bégin, S.; Bégin, D.; Jierry, L.; Mertz, D. Peptide hydrogels assembled from enzyme-adsorbed mesoporous silica nanostructures for thermoresponsive doxorubicin release. ACS Appl. Nano Mater. 2022, 5, 120–125. [Google Scholar] [CrossRef]
- Strong, L.E.; West, J.L. Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles. ACS Biomater. Sci. Eng. 2015, 1, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Farmanbordar, H.; Amini-Fazl, M.S.; Mohammadi, R. pH-Sensitive silica-based core–shell nanogel prepared via RAFT polymerization: Investigation of the core size effect on the release profile of doxorubicin. New J. Chem. 2021, 45, 21824–21833. [Google Scholar] [CrossRef]
- Farmanbordar, H.; Amini-Fazl, M.S.; Mohammadi, R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. J. Drug Deliv. Sci. Technol. 2021, 66, 102896. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.A. pH—Responsive Hydrogel Based on a Tumor—Targeting Mesoporous Silica Nanocomposite for Sustained Cancer Labeling and Therapy. Macromol. Rapid Commun. 2016, 37, 1533–1539. [Google Scholar] [CrossRef]
- Amirkhani, H.; Homayoonfal, M.; Davar, F. Membrane pH responsibility as a remote control for pore size arrangement and surface charge adjustment in order to efficient separation of doxorubicin antitumor drug. Sep. Purif. Technol. 2022, 282, 120116. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Parker, S.G.; Zhang, X.; Gooding, J.J.; Ru, Y.; Liu, Y.; Zhou, Y. Light-induced hydrogel based on tumor-targeting mesoporous silica nanoparticles as a theranostic platform for sustained cancer treatment. ACS Appl. Mater. Interfaces 2016, 8, 15857–15863. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Qu, L.; Wu, H.; Kong, H.; Yang, Z.; Chen, D.; Mäkilä, E.; Salonen, J.; Santos, H.A.; et al. Gold nanorods conjugated porous silicon nanoparticles encapsulated in calcium alginate nano hydrogels using microemulsion templates. Nano Lett. 2018, 18, 1448–1453. [Google Scholar] [CrossRef]
- de Melo Santana, B.; Pieretti, J.C.; Gomes, R.N.; Cerchiaro, G.; Seabra, A.B. Cytotoxicity towards Breast Cancer Cells of Pluronic F-127/Hyaluronic Acid Hydrogel Containing Nitric Oxide Donor and Silica Nanoparticles Loaded with Cisplatin. Pharmaceutics 2022, 14, 2837. [Google Scholar] [CrossRef] [PubMed]
- Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M.A.; Ahmad, S. pH-responsive biocompatible nanocomposite hydrogels for therapeutic drug delivery. ACS Appl. Biol. Mater. 2018, 1, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.M.; Jung, Y.L.; Kim, S.H.; Lee, D.S.; Thambi, T. Injectable hydrogel imbibed with camptothecin-loaded mesoporous silica nanoparticles as an implantable sustained delivery depot for cancer therapy. J. Colloid Interface Sci. 2023, 636, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Gao, Q.; Sheng, Y.; Li, S.; Kong, Y. Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose. Int. J. Biol. Macromol. 2022, 202, 37–45. [Google Scholar] [CrossRef]
- Goncharuk, O.; Samchenko, Y.; Kernosenko, L.; Korotych, O.; Poltoratska, T.; Pasmurtseva, N.; Oranska, O.; Sternik, D.; Mamyshev, I. Thermoresponsive hydrogels physically crosslinked with magnetically modified LAPONITE® nanoparticles. Soft Matter 2020, 16, 5689–5701. [Google Scholar] [CrossRef]
- Rahmani, E.; Pourmadadi, M.; Ghorbanian, S.A.; Yazdian, F.; Rashedi, H.; Navaee, M. Preparation of a pH--responsive chitosan--montmorillonite--nitrogen--doped carbon quantum dots nanocarrier for attenuating doxorubicin limitations in cancer therapy. Eng. Life Sci. 2022, 22, 634–649. [Google Scholar] [CrossRef]
- Ahmadi, M.; Pourmadadi, M.; Ghorbanian, S.A.; Yazdian, F.; Rashedi, H. Ultra pH-sensitive nanocarrier based on Fe2O3/chitosan/montmorillonite for quercetin delivery. Int. J. Biol. Macromol. 2021, 191, 738–745. [Google Scholar] [CrossRef]
- Gonçalves, M.; Figueira, P.; Maciel, D.; Rodrigues, J.; Qu, X.; Liu, C.; Tomás, H.; Li, Y. pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater. 2014, 10, 300–307. [Google Scholar] [CrossRef]
- Nagahama, K.; Kawano, D.; Oyama, N.; Takemoto, A.; Kumano, T.; Kawakami, J. Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. Biomacromolecules 2015, 16, 880–889. [Google Scholar] [CrossRef]
- Abbasian, M.; Roudi, M.M.; Mahmoodzadeh, F.; Eskandani, M.; Jaymand, M. Chitosan-grafted-poly (methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int. J. Biol. Macromol. 2018, 118, 1871–1879. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, H.; Huang, H.; Zhang, Y.; Hou, L.; Zhang, Z. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. Nanotechnology 2015, 26, 365103. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mallela, J.; Garapati, U.S.; Ravi, S.; Chinnasamy, V.; Girard, Y.; Howell, M.; Mohapatra, S. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Rasoulzadehzali, M.; Namazi, H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int. J. Biol. Macromol. 2018, 116, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Omidi, S.; Pirhayati, M.; Kakanejadifard, A. Co-delivery of doxorubicin and curcumin by a pH-sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker. Carbohydr. Polym. 2020, 231, 115745. [Google Scholar] [CrossRef] [PubMed]
- Havanur, S.; Batish, I.; Cheruku, S.P.; Gourishetti, K.; JagadeeshBabu, P.E.; Kumar, N. Poly (N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Mater. Sci. Eng. C 2019, 105, 110094. [Google Scholar] [CrossRef] [PubMed]
- Ayazi, H.; Akhavan, O.; Raoufi, M.; Varshochian, R.; Motlagh, N.S.H.; Atyabi, F. Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf. B Biointerfaces 2020, 186, 110712. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef]
- Xu, P.; Hong, F.; Wang, J.; Cong, Y.; Dai, S.; Wang, S.; Zhai, Y. Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders. EBioMedicine 2017, 16, 251–261. [Google Scholar] [CrossRef]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 2011, 51, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem.-Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 2019, 75, 40–53. [Google Scholar] [CrossRef]
- Dutta, T.; Sarkar, R.; Pakhira, B.; Ghosh, S.; Sarkar, R.; Barui, A.; Sarkar, S. ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: Comparison with graphene oxide (GO). RSC Adv. 2015, 5, 80192–80195. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012, 33, 8017–8025. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B 2011, 115, 6279–6288. [Google Scholar] [CrossRef]
- Wang, Y.W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J.H.; Liu, Y.; Wang, H. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 2014, 6, 2791–2798. [Google Scholar] [CrossRef]
- Jannesari, M.; Akhavan, O.; Hosseini, H.R.M.; Bakhshi, B. Oxygen-Rich Graphene/ZnO2-Ag Nanoframeworks with pH-Switchable Catalase/Peroxidase Activity as O2 Nanobubble-Self Generator for Bacterial Inactivation. J. Colloid Interface Sci. 2023, 637, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qin, J.; Zhang, S.; Radian, A.; Long, M. Solid peroxides in Fenton-like reactions at near neutral pHs: Superior performance of MgO2 on the accelerated reduction of ferric species. Chemosphere 2021, 270, 128639. [Google Scholar] [CrossRef] [PubMed]
Chemotherapeutic | Abbreviation | pKa | Solubility in Water, 25 °C | Refs. | |
---|---|---|---|---|---|
Methotrexate | MTX | 4.7 | 1 mg/mL | [37,38,39] | |
Camptothecin | CPT | 4.7 | 0.0027 mg/mL | [40,41] | |
Cisplatin | CIS | 5.4 | 7.2 | 1 mg/mL | [42,43] |
Vinblastine | VBT | 5.4 | 7.4 | 10 mg/mL | [44,45,46] |
5-Fluorouracil | 5-Flu | 8.0 | 12.2 mg/mL | [47,48,49] | |
Bleomycin | BMC | 7.3 | 7.5 | 20 mg/mL | [50,51] |
Doxorubicin | DOX | 8.9 | 9.9 | 50 mg/mL | [52,53,54] |
Paclitaxel | PCT | 10.0 | ≤0.0001 mg/mL | [55,56,57,58] | |
Docetaxel | DCT | 10.7 | 0.0019 mg/mL | [59,60] | |
6-Mercaptopurine | 6-MCP | 11.2 | 0.734 mg/mL | [61,62,63] | |
Cyclophosphamide | CPM | 12.1 | 40 mg/mL | [64,65] |
№ | Polymer | Abbreviation |
---|---|---|
1 | gelatin | G |
2 | hyaluronic acid | HA |
3 | alginate | ALG |
4 | chitosan | CS |
5 | dextran | DEX |
6 | oleopolyol | OA |
7 | poly(N-isopropylacrylamide) | PNIPAm |
8 | Poly (N, N-diethyl acrylamide) | PDEA |
9 | polyacrylonitrile-polyamide | PAN-PA |
10 | poly(acrylic acid) | PAAc |
11 | poly(amidoamine) | PAAm |
12 | poly(methacrylic acid) | PMAA |
13 | poly(N-isopropylacrylamide-co-acrylamide | PNIPAAm |
14 | poly(N-vinylpyrrolidone) | PVPON |
15 | poly(N-isopropylacrylamide-co-acrylamide) | PNIPAAm-co-AAm |
16 | poly(β-aminoester urethane) | PAEU |
17 | acrylamide-methylenebisacrylamide-green tea | AM-MBA-GT |
18 | poly(polypropylene glycol) | PPG |
19 | poly(ethylene glycol) | PEG |
20 | methoxypoly(ethylene glycol) | mPEG |
21 | polyethyleneimine | PEI |
22 | carboxymethyl cellulose | CMC |
23 | poly lactic-co-glycolic acid | PLGA |
24 | poly(ethylene glycol) -oleic acid | OA-PEG |
25 | prepare aminated guar gum | AGG |
26 | polyethyleneimine | PEI |
27 | poly vinyl alcohol | PVA |
28 | poly(N-isopropylacrylamide) | PNIPAM |
29 | poly(β-amino ester) | PBAE |
30 | poly(N-isopropylacrylamide-co-maleic anhydride)]@strach | PNIPAAm-co-MA @starch |
31 | poly(ethylene glycol)-block-poly(N-isopropylacrylamide- co-maleic anhydride)2-graft-poly(ethylene glycol) | PEG-b-(PNIPAAm- co-PMA)2-g-PEG |
32 | N,N′-(dimethylamino)ethyl methacrylate-co-maleic anhydride | DMAEMA-co-MA |
33 | poly(N-isopropylacrylamide-co-itaconic anhydride)- | P(NIPAAm-co-IA)-PEG |
34 | poly[(2-succinyloxyethylmethacrylate)-b-(N-isopropyl acrylamide)-b-dimethylaminoethylmethacrylate) | P(SEMA-b-NIPAM- b-DMAEMA) |
35 | glycidylmethacrylate-grafted-maleated cyclodextrin | P(GMA-g-MACD) |
36 | poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) | PLGA-PEG-PLGA |
37 | sodium alginate- poly(acrylamide- co-N-vinylcaprolactam-co-acrylamidoglycolic acid) | SA-PAVA |
38 | poly (N-vinyl pyrrolidone/dextran) | PVP-DEX |
39 | Strychnos potatorum L. (SPL) polysaccharide-based dual-responsive semi-IPN-type | SPL-DMA |
40 | N-fluorenylmethoxycarbonyl-di-phenylalanine | Fmoc-FF |
41 | poly(N-isopropylacrylamide-co-acrylamide) | NIPAAm-co-AAm |
42 | poly(N-isopropyl-acrylamide-acrylic acid) | PNA |
N | Polymers | Nanoparticles | Drug | Loading | Releasing | Cytotoxicity | Ref. | |
---|---|---|---|---|---|---|---|---|
Metal | Size | |||||||
1 | CMC | silver | sphere 10 nm | DOX | noncovalent | pH | 60% | [122] |
2 | SA-PAVA | silver | sphere 20 nm | 5-Flu | noncovalent | pH | – | [123] |
3 | PVP-DEX | silver | sphere 12 nm | DOX | noncovalent | pH | – | [124] |
4 | SPL-DMA | silver | sphere 20 nm | DOX 5-Flu | noncovalent | pH | 85% | [125] |
5 | PAAc | gold | sphere 5 nm | DOX | noncovalent | pH | – | [126] |
6 | PEG | gold | sphere 13 nm | DOX | noncovalent | pH | in vivo | [127] |
7 | Fmoc-FF | gold | sphere 226 nm | DOX 5-Flu | noncovalent | T | – | [128] |
8 | NIPAAm-co-AAm | gold | sphere 150 nm | DOX | noncovalent | NIR | 30% | [129] |
9 | PNA | gold | cubic 50 nm | DOX | noncovalent | NIR | 75% | [130] |
10 | PEG-CS | gold | rod 54 nm | PCT | noncovalent | NIR | in vivo | [131] |
11 | ALG | gold | – | CIS | noncovalent | T | in vivo | [132] |
12 | ALG | gold | sphere 100 nm | CIS | noncovalent | – | 66% | [133] |
13 | PNIPAAm | gold | sphere 50 nm | 5-Flu | noncovalent | Ph, T | 70% | [134] |
Oxide-Nanoparticles | IEP | Ref. | |
---|---|---|---|
1 | SiO2 | 2 | [137] |
2 | Mesoporous silica | 2–3 | [138] |
3 | Cr2O3 | 3 | [139] |
4 | SnO2 | 3.8 | [140] |
5 | Fe3O4 | 5.0 | [141] |
6 | γ-Fe2O3 | 5.5 | [142] |
7 | TiO2 | 6.4 | [143] |
8 | CuO | 6.5 | [144] |
9 | α-Fe2O3 | 6.7 | [139] |
10 | ZrO2 | 7.0 | [145] |
11 | CeO2 | 8.0 | [146] |
12 | γ-Al2O3 | 8.5 | [147] |
13 | α-Al2O3 | 9.2 | [148] |
14 | Mn2O3 | 9.8 | [149] |
15 | NiO | 10 | [150] |
16 | ZnO | 10.3 | [151] |
17 | MgO | 12–12.7 | [152] |
N | Polymers | Nanoparticles | Drug | Loading | Releasing | Cytotoxicity | Ref. | |
---|---|---|---|---|---|---|---|---|
Metal | Size | |||||||
1 | G, ALG | Fe3O4 | sphere 25 nm | DOX | noncovalent | pH | 60% | [153] |
2 | PNIPAAm-co-MA@starch | Fe3O4 | sphere 70 nm | DOX | covalent | pH | – | [154] |
3 | PEG-b-(PNIPAAm-co-PMA)2-g-PEG | Fe3O4 | sphere 100 nm | DOX | noncovalent | pH | – | [155] |
4 | DMAEMA-co-MA | Fe3O4 | sphere 130 nm | MET | covalent | pH | 65% | [156] |
5 | P(NIPAAm-co-IA)-PEG | Fe3O4 | sphere 168 nm | DOX | noncovalent | pH | 90% | [157] |
6 | P(SEMA-b-NIPAM-b-DMAEMA) | Fe3O4 | sphere 22 nm | DOX | noncovalent | pH | 80% | [158] |
7 | PEI, CMC | Fe3O4 | sphere 15 nm | DOX | noncovalent | pH | – | [159] |
8 | poly(γ-GA-co-γ-GAOSu)-g-PEG-FA, γ-PGA | Fe3O4 | sphere 43 nm | DOX | noncovalent | pH | 70% | [160] |
9 | OA-PEG | Fe3O4 | sphere 234 nm | DOX | noncovalent | – | 50% | [161] |
10 | ALG, G | Fe3O4 | sphere 113 nm | DOX | noncovalent | magnetic | 80% | [162] |
11 | Agar | Fe3O4 | sphere 10 nm | DOX | – | T | 85% | [163] |
12 | ALG | Fe3O4 | sphere 700 nm | DOX | – | pH | 90% | [164] |
13 | AGG | Fe3O4 | sphere 16 nm | DOX | noncovalent | – | – | [165] |
14 | PVPON | Fe3O4 | sphere 20 nm | DOX | noncovalent | pH | – | [166] |
15 | PAAc | Fe3O4 | sphere 70 nm | DOX | noncovalent | pH | – | [167] |
16 | G, PVA PLGA | Fe3O4 | sphere 2–10 μm | DOX | noncovalent | – | 55% | [168] |
17 | Chitosan | Fe3O4 | sphere | DOX | noncovalent | pH | – | [169] |
18 | DEX | Fe3O4 | sphere 20 nm | DOX | noncovalent | pH | – | [170] |
19 | PBAE | Fe3O4 | sphere 20 nm | PTX | noncovalent | T | 55% | [171] |
20 | mPEG | Fe3O4 | sphere 20 nm | PTX | noncovalent | T | – | [172] |
21 | ALG | Fe3O4 | sphere | 5-Flu | noncovalent | pH | – | [173] |
22 | CS PAAc | Fe3O4 | sphere 98 nm | 5-Flu | noncovalent | pH | – | [174] |
23 | mPEG–LUT | Fe3O4 | sphere | 5-Flu | noncovalent | pH T | – | [175] |
24 | AM-MBA-GT | Fe3O4 | sphere 10 nm | 5-Flu | noncovalent | pH T | – | [176] |
25 | P(GMA-g-MACD) | Fe3O4 | sphere 20 nm | 5-Flu | noncovalent | pH | 55% | [177] |
26 | CMC | ZnO | sphere 20 nm | DOX | noncovalent | T | 60% | [178] |
27 | PVA-oxidized starch | CuO | sphere 45 nm | DOX | noncovalent | T | 70% | [179] |
28 | Cellulose-PAA | MgO | rod | DOX | noncovalent | pH | 70% | [180] |
29 | PMAA PVPON | mMnO | sphere cubic 2.4 μm | DOX | noncovalent | pH | 40% | [181] |
N | Polymers | Nanoparticles | Drug | Loading | Releasing | Cytotoxicity | Ref. | |
---|---|---|---|---|---|---|---|---|
Type | Size | |||||||
1 | PEG PPG | mSiO2 | sphere 60 nm | DOX | noncovalent | dissolution | in vivo | [182] |
2 | HA | mSiO2 | sphere 45 nm | DOX | covalent | enzymatic | 90% | [183] |
3 | Peptide | mSiO2 | sphere 90 nm | DOX | noncovalent | T | – | [184] |
4 | PNIPAAm- co-AA | Au-SiO2 | sphere 326 nm | DOX | noncovalent | NIR | 90% | [185] |
5 | PMAA | SiO2 | sphere | DOX | noncovalent | pH | 80% | [186] |
6 | PMAA | SiO2 | sphere 100 nm | DOX | noncovalent | pH | – | [187] |
7 | HA | mSiO2 | sphere 200 nm | DOX | noncovalent | pH enzymatic | 80% | [188] |
8 | PAN-PA | SiO2 | sphere 20 nm | DOX | noncovalent | pH | – | [189] |
9 | HA-azobenzene | mSiO2 | sphere 150 nm | DOX | noncovalent | T | 90% | [190] |
10 | ALG | mSiO2 | sphere 130 nm | DOX | covalent | – | 90% | [191] |
11 | PEG, PPG, HA | SiO2 | sphere 198 nm | CIS | noncovalent | T | 71% | [192] |
12 | CS, PVA, OA | SiO2 | sphere 50 nm | CIS | noncovalent | pH | 65% | [193] |
13 | PEG-PAEU | mSiO2 | sphere 157 nm | CPT | noncovalent | pH | 80% | [194] |
14 | CS, CMC, HA | NH2-mSiO2 | sphere 300 nm | CYT MTX | covalent | pH | 90% | [195] |
15 | PNIPAm | LAM | plate | 5-Flu | noncovalent | T | – | [196] |
16 | CS | MM | plate 270 nm | DOX | noncovalent | pH | 88% | [197] |
17 | CS | MM | plate 140 nm | DOX | noncovalent | pH | 66% | [198] |
18 | ALG | MM | plate 142 nm | DOX | noncovalent | pH | 75% | [199] |
19 | PLGA-PEG-PLGA | MM | plate | DOX | noncovalent | T | in vivo | [200] |
N | Polymers | Nanoparticles | Drug | Loading | Releasing | Cytotoxicity | Ref. | |
---|---|---|---|---|---|---|---|---|
Type | Size | |||||||
1 | CS, PMAA | graphene oxide | – | DOX | noncovalent | pH | 75% | [201] |
2 | PEI | graphene oxide | sphere 320 nm | DOX | noncovalent | pH | in vivo | [202] |
3 | Acrylated-CS NIPAM PEG-diacrylate | graphene oxide | sphere 320 nm | DOX | noncovalent | NIR | 75% | [203] |
4 | CS | graphene oxide | sphere 20 nm | DOX | noncovalent | pH | 40% | [204] |
5 | CS-cellulose | graphene oxide | – | DOX | noncovalent | pH | in vivo | [205] |
6 | PDEA | graphene | sphere 15 nm | DOX | noncovalent | pH | in vivo | [206] |
7 | – (aerogel) | graphene oxide | sheet 200 nm | DOX PTX | noncovalent | pH | – | [207] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhivkov, A.M.; Popov, T.T.; Hristova, S.H. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023, 9, 421. https://doi.org/10.3390/gels9050421
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels. 2023; 9(5):421. https://doi.org/10.3390/gels9050421
Chicago/Turabian StyleZhivkov, Alexandar M., Trifon T. Popov, and Svetlana H. Hristova. 2023. "Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics" Gels 9, no. 5: 421. https://doi.org/10.3390/gels9050421
APA StyleZhivkov, A. M., Popov, T. T., & Hristova, S. H. (2023). Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels, 9(5), 421. https://doi.org/10.3390/gels9050421