Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Gelation Studies
2.3. Sensing Measurements
3. Conclusions
4. Experimental Section
4.1. Materials and Methods
4.2. Gelation Studies
4.3. Rheological Measurements
4.4. Synthesis
4.4.1. Synthesis of Compound 1b
4.4.2. Synthesis of Compound 2
4.4.3. Synthesis of Compound 4
4.5. X-ray Diffraction and Molecular Modelling
4.6. Sensor Measurements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [PubMed]
- Andre, R.S.; Sanfelice, R.C.; Pavinatto, A.; Mattoso, L.H.C.; Correa, D.S. Hybrid Nanomaterials Designed for Volatile Organic Compounds Sensors: A Review. Mater. Des. 2018, 156, 154–166. [Google Scholar] [CrossRef]
- Galstyan, V.; D’Arco, A.; Di Fabrizio, M.; Poli, N.; Lupi, S.; Comini, E. Detection of Volatile Organic Compounds: From Chemical Gas Sensors to Terahertz Spectroscopy. Rev. Anal. Chem. 2021, 40, 33–57. [Google Scholar] [CrossRef]
- Lin, C.H.; Grant, R.H.; Heber, A.J.; Johnston, C.T. Application of Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) to Measure Greenhouse Gas Concentrations from Agricultural Fields. Atmos. Meas. Tech. 2019, 12, 3403–3415. [Google Scholar] [CrossRef]
- Park, S.; An, S.; Ko, H.; Jin, C.; Lee, C. Synthesis of Nanograined ZnO Nanowires and Their Enhanced Gas Sensing Properties. ACS Appl. Mater. Interfaces 2012, 4, 3650–3656. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Yan, W.; Zhuang, X.; Ng, K.W.; Cheng, X. Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater. ACS Omega 2021, 6, 1216–1222. [Google Scholar] [CrossRef]
- Jian, Y.; Hu, W.; Zhao, Z.; Cheng, P.; Haick, H.; Yao, M.; Wu, W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Lett. 2020, 12, 71. [Google Scholar] [CrossRef]
- Ibañez, J.; Zamborini, P. Chemiresistive Sensing of Volatile Organic Compounds with Films of Surfactant-Stabilized Gold and Gold-Silver Alloy Nanoparticles. ACS Nano 2008, 2, 1543–1552. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; Hamabe, L.; Abugomaa, A.; Shimada, K.; Yoshida, T.; Tanaka, T.; Yokoi, A.; Elbadawy, M.; Tanaka, R. Smart/Stimuli-Responsive Hydrogels: Cutting-Edge Platforms for Tissue Engineering and Other Biomedical Applications. Mater. Today Bio. 2022, 13, 100186. [Google Scholar] [CrossRef]
- Mrinalini, M.; Prasanthkumar, S. Recent Advances on Stimuli-Responsive Smart Materials and Their Applications. Chempluschem 2019, 84, 1103–1121. [Google Scholar] [CrossRef] [PubMed]
- Mensah, M.B.; Awudza, J.A.M.; O’Brien, P. Castor Oil: A Suitable Green Source of Capping Agent for Nanoparticle Syntheses and Facile Surface Functionalization. R. Soc. Open Sci. 2018, 5, 180824. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Dumancas, G.G.; Viswanath, L.C.K.; Maples, R.; Subong, B.J.J. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights 2016, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, S.; Srinivasan, K. Preparation of Functionalized Castor Oil Derivatives with Tunable Physical Properties Using Heterogeneous Acid and Base Catalysts. RSC Adv. 2015, 5, 50289–50297. [Google Scholar] [CrossRef]
- Mizota, I.; Umeshima, S.; Matsunaga, S.; Isomura, R.; Nakahama, K.; Shimizu, M.; Yokomori, Y.; Umemura, T.; Kuroki, N.; Kiyosawa, J.; et al. Exploration into a New Dicarboxylic Acid Derived from Ricinoleic Acid for High-Performance Aluminum Electrolytic Capacitors. Bull. Chem. Soc. Jpn. 2016, 89, 1368–1374. [Google Scholar] [CrossRef]
- Thamizhanban, A.; Balaji, S.; Lalitha, K.; Prasad, Y.S.; Prasad, R.V.; Kumar, R.A.; Maheswari, C.U.; Sridharan, V.; Nagarajan, S. Glycolipid-Based Oleogels and Organogels: Promising Nanostructured Structuring Agents. J. Agric. Food Chem. 2020, 68, 14896–14906. [Google Scholar] [CrossRef]
- Sarvepalli, G.P.; Subbiah, D.K.; Lalitha, K.; Nagarajan, S.; Rayappan, J.B.B. Self-Assembled Sugar-Based Copper Nanoparticles as Trimethylamine Sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 1594–1603. [Google Scholar] [CrossRef]
- Thamizhanban, A.; Sarvepalli, G.P.; Lalitha, K.; Prasad, Y.S.; Subbiah, D.K.; Das, A.; Balaguru Rayappan, J.B.; Nagarajan, S. Fabrication of Biobased Hydrophobic Hybrid Cotton Fabrics Using Molecular Self-Assembly: Applications in the Development of Gas Sensor Fabrics. ACS Omega 2020, 5, 3839–3848. [Google Scholar] [CrossRef] [PubMed]
- Van den Broek, J.; Abegg, S.; Pratsinis, S.E.; Güntner, A.T. Highly Selective Detection of Methanol over Ethanol by a Handheld Gas Sensor. Nat. Commun. 2019, 10, 4220. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Zhao, J.; Xuan, W.; Wang, W.; Luo, J.; Xie, J. Distilling determination of water content in hydraulic oil with a ZnO/glass surface acoustic wave device. Microsyst. Technol. 2017, 23, 1841–1845. [Google Scholar] [CrossRef]
- Yamada, Y.; Otsuka, Y.; Mao, Z.; Maeda, S. Periodical propagation of torsion in polymer gels. Sci Rep. 2022, 12, 16679. [Google Scholar] [CrossRef] [PubMed]
- Bindu, H.; Palanisamy, A. Bio-Based Castor Oil Organogels and Investigations on Their Anion-Tuning Properties. Colloid Polym. Sci. 2019, 297, 1411–1421. [Google Scholar] [CrossRef]
- Mallia, V.A.; George, M.; Blair, D.L.; Weiss, R.G. Robust Organogels from Nitrogen-Containing Derivatives of (R)-12-Hydroxystearic Acid as Gelators: Comparisons with Gels from Stearic Acid Derivatives. Langmuir 2009, 25, 8615–8625. [Google Scholar] [CrossRef] [PubMed]
- Mallia, V.A. Self-Assembly and Aggregation Studies of Simple Structural Derivatives of Stearic Acid. ACS Symp. Ser. 2020, 1355, 31–45. [Google Scholar] [CrossRef]
- Draper, E.R.; Adams, D.J. Low-Molecular-Weight Gels: The State of the Art. Chem 2017, 3, 390–410. [Google Scholar] [CrossRef]
- Rogers, M.A.; Wright, A.J.; Marangoni, A.G. Nanostructuring Fiber Morphology and Solvent Inclusions in 12-Hydroxystearic Acid / Canola Oil Organogels. Curr. Opin. Colloid Interface Sci. 2009, 14, 33–42. [Google Scholar] [CrossRef]
- Luo, C.; Yang, B.; Zhou, Y.; Yang, J.; Han, F.; Baocai, X. Gelation Properties and Application Based on Amino Acids Gelators with Four Kinds of Edible Oils. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124184. [Google Scholar] [CrossRef]
- Lalitha, K.; Sridharan, V.; Maheswari, C.U.; Vemula, P.K.; Nagarajan, S. Morphology Transition in Helical Tubules of a Supramolecular Gel Driven by Metal Ions. Chem. Commun. 2017, 53, 1538–1541. [Google Scholar] [CrossRef]
- Zhang, Y.; Weiss, R.G. How Do H-Bonding Interactions Control Viscoelasticity and Thixotropy of Molecular Gels? Insights from Mono-, Di- and Tri-Hydroxymethylated Salkanamide Gelators. J. Colloid Interface Sci. 2017, 486, 359–371. [Google Scholar] [CrossRef]
- Lalitha, K.; Nagarajan, S. Strongly Fluorescent Organogels and Self-Assembled Nanostructures from Pyrene Coupled Coumarin Derivatives: Application in Cell Imaging. J. Mater. Chem. B 2015, 3, 5690–5701. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Wang, T.; Liu, M. Tuning Soft Nanostructures in Self-Assembled Supramolecular Gels: From Morphology Control to Morphology-Dependent Functions. Small 2015, 11, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, K.; Prasad, Y.S.; Sridharan, V.; Maheswari, C.U.; John, G.; Nagarajan, S. A Renewable Resource-Derived Thixotropic Self-Assembled Supramolecular Gel: Magnetic Stimuli Responsive and Real-Time Self-Healing Behaviour. RSC Adv. 2015, 5, 77589–77594. [Google Scholar] [CrossRef]
- Rachamalla, A.K.; Rebaka, V.P.; Banoo, T.; Pawar, R.; Faizan, M.; Lalitha, K.; Nagarajan, S. A Facile Synthesis of Amphiphilic N-Glycosyl Naphthalimides and Fabrication of Flexible Semiconductors Using Molecular Self-Assembly. Green Chem. 2022, 24, 2451–2463. [Google Scholar] [CrossRef]
- Nanda, J.; Biswas, A.; Banerjee, A. Single Amino Acid Based Thixotropic Hydrogel Formation and PH-Dependent Morphological Change of Gel Nanofibers. Soft Matter 2013, 9, 4198–4208. [Google Scholar] [CrossRef]
- Ajay Mallia, V.; Weiss, R.G. Correlations between Thixotropic and Structural Properties of Molecular Gels with Crystalline Networks. Soft Matter 2016, 12, 3665–3676. [Google Scholar] [CrossRef]
- Patel, A.R.; Babaahmadi, M.; Lesaffer, A.; Dewettinck, K. Rheological Profiling of Organogels Prepared at Critical Gelling Concentrations of Natural Waxes in a Triacylglycerol Solvent. J. Agric. Food Chem. 2015, 63, 4862–4869. [Google Scholar] [CrossRef]
- Pek, Y.S.; Wan, A.C.A.; Shekaran, A.; Zhuo, L.; Ying, J.Y. A Thixotropic Nanocomposite Gel for Three-Dimensional Cell Culture. Nat. Nanotechnol. 2008, 3, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic Property in Pharmaceutical Formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Lei, H.; Kang, Y.; Zhao, C.; Fang, Y. Ferrocene-Containing Thixotropic Molecular Gels: Creation and a Novel Strategy for Water Purification. J. Colloid Interface Sci. 2015, 448, 374–379. [Google Scholar] [CrossRef]
- Shankar, P.; Rayappan, J.B.B. Racetrack Effect on the Dissimilar Sensing Response of ZnO Thin Film—An Anisotropy of Isotropy. ACS Appl. Mater. Interfaces 2016, 8, 24924–24932. [Google Scholar] [CrossRef]
- Ishida, H.; Takahashi, H.; Sato, H.; Tsubomura, H. Interaction of oxygen with organic molecules. I. Absorption spectra caused by adsorbed organic molecules and oxygen. J. Am. Chem Soc. 1970, 92, 275–280. [Google Scholar] [CrossRef]
- Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M. Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy. J. Nanomater. 2013, 2013, 263852. [Google Scholar] [CrossRef]
- Nguyen Tien, C.; Le Thi Thu, H.; Nguyen Van, T.; Vu Quoc, T.; Vu Quoc, M.; Pham Chien, T.; Van Meervelt, L. Crystal structure of (E)-N′-[1-(4-aminophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide methanol monosolvate. Acta Cryst. E 2018, 74, 910–914. [Google Scholar] [CrossRef] [PubMed]
S.No. | Solvent/Vegetable Oils | Observation (CGC in % w/v) | |
---|---|---|---|
4a | 4b | ||
1 | Castor oil | G(0.5) | G(0.5) |
2 | Eucalyptus oil | S | S |
3 | Hazelnut oil | G(1) | G(1) |
4 | Heavy paraffin oil | G(0.5) | G(0.5) |
5 | Jojoba oil | G(0.5) | G(0.5) |
6 | Light paraffin oil | G(1) | G(1) |
7 | Linseed oil | G(0.5) | G(0.5) |
8 | Olive oil | G(0.5) | G(0.5) |
9 | Sesame oil | G(0.5) | G(0.5) |
10 | Soybean oil | G(0.5) | G(0.5) |
11 | DMF | S | S |
12 | H2O | I | I |
13 | DMSO | G(1.5) | G(1.5) |
14 | Ethyl acetate | I | I |
15 | Cyclohexane | I | I |
16 | Xylene | G(2) | G(2) |
17 | Glycerol | G(2) | S |
18 | Ethylene Glycol | G(1.5) | G(1.5) |
19 | Poly (ethylene glycol) | G(1) | G(1) |
20 | Methanol | I | I |
21 | 1,2-dichlorobenzene | G(1.5) | G(1.5) |
22 | Lauryl alcohol | G(1.5) | G(1.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Thamizhanban, A.; Lalitha, K.; Subbiah, D.K.; Rachamalla, A.K.; Rebaka, V.P.; Banoo, T.; Kumar, Y.; Sridharan, V.; Ahmad, A.; et al. Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection. Gels 2023, 9, 442. https://doi.org/10.3390/gels9060442
Singh V, Thamizhanban A, Lalitha K, Subbiah DK, Rachamalla AK, Rebaka VP, Banoo T, Kumar Y, Sridharan V, Ahmad A, et al. Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection. Gels. 2023; 9(6):442. https://doi.org/10.3390/gels9060442
Chicago/Turabian StyleSingh, Vandana, Ayyapillai Thamizhanban, Krishnamoorthy Lalitha, Dinesh Kumar Subbiah, Arun Kumar Rachamalla, Vara Prasad Rebaka, Tohira Banoo, Yogendra Kumar, Vellaisamy Sridharan, Asrar Ahmad, and et al. 2023. "Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection" Gels 9, no. 6: 442. https://doi.org/10.3390/gels9060442
APA StyleSingh, V., Thamizhanban, A., Lalitha, K., Subbiah, D. K., Rachamalla, A. K., Rebaka, V. P., Banoo, T., Kumar, Y., Sridharan, V., Ahmad, A., Maheswari Chockalingam, U., Balaguru Rayappan, J. B., Khan, A. A., & Nagarajan, S. (2023). Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection. Gels, 9(6), 442. https://doi.org/10.3390/gels9060442