Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Protein Building Blocks
2.2. Viscoelastic Properties of the Protein Hydrogels
2.3. Effects of the ST:SC Ratio on the Viscoelastic Properties of the Resulting Hydrogels
2.3.1. SC3 Combined with ST–SasG–ST and ST–SasGlong–ST
2.3.2. SC4 Combined with ST–SasG–ST and ST–SasGlong–ST
2.3.3. Effects of the Total Protein Concentration on the Viscoelastic Properties of the Resulting Hydrogels
2.3.4. SC3 Combined with ST–SasG–ST and ST–SasGlong–ST
2.3.5. SC4 Combined with ST–SasG–ST and ST–SasGlong–ST
3. Conclusions
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, Culture Conditions
4.2. Recombinant Protein Expression and Purification
4.3. Preparation of the ST–SC Hydrogels
4.4. Water Intake
4.5. Dynamic Shear Rheology and Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boni, R.; Ali, A.; Shavandi, A.; Clarkson, A.N. Current and novel polymeric biomaterials for neural tissue engineering. J. Biomed. Sci. 2018, 25, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goy, C.B.; Chaile, R.E.; Madrid, R.E. Microfluidics and hydrogel: A powerful combination. React. Funct. Polym. 2019, 145, 104314. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield. Sustainability 2021, 13, 3253. [Google Scholar] [CrossRef]
- Schloss, A.C.; Williams, D.M.; Regan, L.J. Protein-Based Hydrogels for Tissue Engineering. In Protein-Based Engineered Nanostructures. Advances in Experimental Medicine and Biology; Cortajarena, A., Grove, T., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Boni, R.; Ali, A.; Giteru, S.G.; Shavandi, A.; Clarkson, A.N. Silk fibroin nanoscaffolds for neural tissue engineering. J. Mater. Sci. Mater. Med. 2020, 31, 81. [Google Scholar] [CrossRef] [PubMed]
- Grove, T.Z.; Forster, J.; Pimienta, G.; Dufresne, E.; Regan, L. A modular approach to the design of protein-based smart gels. Biopolymers 2012, 97, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, B.; Fierer, J.O.; Celik, E.; Chittock, E.C.; Schwartz-Linek, U.; Moy, V.T.; Howarth, M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 2012, 109, E690–E697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boni, R.; Blackburn, E.A.; Kleinjan, D.J.; Jonaitis, M.; Hewitt-Harris, F.; Murdoch, M.; Rosser, S.; Hay, D.C.; Regan, L. Chemically cross-linked hydrogels from repetitive protein arrays. J. Struct. Biol. 2023, 215, 107981. [Google Scholar] [CrossRef] [PubMed]
- Stojkov, G.; Niyazov, Z.; Picchioni, F.; Bose, R.K. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels 2021, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Das, P.; Das, N.C. Chapter 16—Characterization tools and techniques of hydrogels. In Hydrogels Based on Natural Polymers; Chen, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–517. [Google Scholar]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Gruszka, D.T.; Wojdyla, J.A.; Bingham, R.J.; Turkenburg, J.P.; Manfield, I.W.; Steward, A.; Leech, A.P.; Geoghegan, J.A.; Foster, T.J.; Clarke, J.; et al. Staphylococcal biofilm-forming protein has a contiguous rod-like structure. Proc. Natl. Acad. Sci. USA 2012, 109, E1011–E1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruszka, D.T.; Whelan, F.; Farrance, O.E.; Fung, H.K.H.; Paci, E.; Jeffries, C.M.; Svergun, D.I.; Baldock, C.; Baumann, C.G.; Brockwell, D.J.; et al. Cooperative folding of intrinsically disordered domains drives assembly of storng elongated protein. Nat. Comm. 2015, 6, 7271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Fang, J.; Xue, B.; Fu, L.; Li, H. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry. Biomacromolecules 2016, 17, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhang, W.B.; Mahdavi, A.; Arnold, F.H.; Tirrell, D.A. Synthesis of bioactive protein hydrogels be genetically encoded SpyTag-SpyCatcher chemistry. Proc. Natl. Acad. Sci. USA 2014, 111, 11269–11274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Discher, D.E.; Janmey, P.; Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, C.F.; Gasperini, L.; Marques, A.P.; Reis, R.L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mat. 2020, 5, 351–370. [Google Scholar] [CrossRef]
- O’Brien, S.; Brannigan, R.P.; Ibanez, R.; Wu, B.; O’Dwyer, J.; O’Brien, F.J.; Cryan, S.A.; Heise, A. Biocompatible polypeptide-based interpenetrating network (IPN) hydrogels with enhanced mechanical properties. J. Mater. Chem. B. 2020, 8, 7785–7791. [Google Scholar] [CrossRef] [PubMed]
- Christoffersson, J.; Aronsson, C.; Jury, M.; Selegård, R.; Aili, D.; Mandenius, C.F. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication 2019, 11, 015013. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liang, G.; Ma, M.; Gao, Y.; Xu, B. Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. J. Mater. Chem. 2006, 17, 850–854. [Google Scholar] [CrossRef]
- Mulyasasmita, W.; Lee, J.S.; Heilshorn, S.C. Molecular-Level Engineering of Protein Physical Hydrogels for Predictive Sol–Gel Phase Behavior. Biomacromolecules 2011, 12, 3406–3411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerman, C.; Rajagopal, K.; Palla, C.S.; Pochan, D.J.; Schneider, J.P.; Furst, E.M. Gelation Kinetics of β-Hairpin Peptide Hydrogel Networks. Macromolecules 2006, 39, 6608–6614. [Google Scholar] [CrossRef]
- Edelstein, A.; Amodaj, N.; Hoover, K.; Vale, R.; Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 2010, 92, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Savin, T.; Doyle, P.S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 2005, 88, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Crocker, J.C.; Grier, D.G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 1996, 179, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.M. Engineering Protein-Based Biomaterials Using SpyTag/SpyCatcher technology. (Order No. 10957209). Available from ProQuest Dissertations & Theses Global. (2089937218). 2018. Available online: https://www.proquest.com/dissertations-theses/engineering-protein-based-biomaterials-using/docview/2089937218/se-2 (accessed on 3 April 2023). [CrossRef] [Green Version]
ST | |||||
---|---|---|---|---|---|
1 mM (2 ST Units) | 2 mM (4 ST Units) | 3 mM (6 ST Units) | 3.5 mM (7 ST Units) | 4 mM (8 ST Units) | |
1 mM SC3 (3 SC units) | 0.6:1 | 1.3:1 | 2:1 | 2.3:1 | 2.6:1 |
1 mM SC4 (4 SC units) | 0.5:1 | 1:1 | 1.5:1 | 1.75:1 | 2:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boni, R.; Regan, L. Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels. Gels 2023, 9, 481. https://doi.org/10.3390/gels9060481
Boni R, Regan L. Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels. Gels. 2023; 9(6):481. https://doi.org/10.3390/gels9060481
Chicago/Turabian StyleBoni, Rossana, and Lynne Regan. 2023. "Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels" Gels 9, no. 6: 481. https://doi.org/10.3390/gels9060481
APA StyleBoni, R., & Regan, L. (2023). Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels. Gels, 9(6), 481. https://doi.org/10.3390/gels9060481