Comparative Electrokinetic Study of Alginate-Coated Colloidal Particles
Abstract
:1. Introduction
2. Results and Discussion
Characterization of Alginate Monolayer on β-FeOOH Colloidal Particles
Alginate/Chitosan Film
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Electro-Optic Method
4.2.2. Microelectrophoresis
4.2.3. Scanning Electron Microscopy (SEM)
4.2.4. Preparation of the Suspensions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haug, A.; Smidsrod, O.; Larsen, B.; Gronowitz, S.; Hoffman, R.A.; Westerdahl, A. The Effect of Divalent Metals on the Properties of Alginate Solutions. II. Comparison of Different Metal Ions. Acta Chem. Scand. 1965, 19, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, D.R.; Biswal, T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021, 3, 30–35. [Google Scholar] [CrossRef]
- Mollah, M.Z.I.; Zahid, H.M.; Mahal, Z.; Faruque, M.R.I.; Khandaker, M.U. The usage and potential uses of alginate for healthcare applications. Front. Mol. Biosci. 2021, 8, 719972. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. Exploration 2022, 2, 20210083. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lv, Z.; Zhang, Z.; Weitz, D.A.; Zhang, H.; Zhang, Y.; Cui, W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. Exploration 2021, 1, 20210036. [Google Scholar] [CrossRef]
- Tan, J.; Luo, Y.; Guo, Y.; Zhou, U.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int. J. Biol. Macromol. 2023, 239, 124275. [Google Scholar] [CrossRef]
- Zheng, X.; Hou, Y.; Zhang, Q.; Zheng, Y.; Wu, Z.; Zhang, X.; Lin, J.-M. 3D microgel with extensively adjustable stiffness and homogeneous microstructure for metastasis analysis of solid tumor. Chin. Chem. Lett. 2023, 108319. (in press). [Google Scholar] [CrossRef]
- Fanucci, S.; Prinsloo, E. Development of a low-cost hydrogel microextrusion printer based on a Kossel delta 3D printer platform. Eng. Rep. 2022, e12615. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Wang, J.; Pei, X.; Chen, J.; Wan, Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int. J. Biol. Macromol. 2023, 230, 123246. [Google Scholar] [CrossRef]
- Karim, A.; Rehman, A.; Feng, J.; Noreen, A.; Assadpour, E.; Kharazmi, M.S.; Lianfu, Z.; Jafari, S.M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv. Colloid Interface Sci. 2022, 307, 102744. [Google Scholar] [CrossRef]
- Larsen, B.E.; Bjørnstad, J.; Pettersen, E.O.; Tønneses, H.H.; Melvik, J.E. Rheological characterization of an Injectable alginate gel systems. BMC Biotechnol. 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smidsrød, O. Molecular bases of some physical properties of alginates in the gel state. Faraday Discuss Chem Soc. 1974, 57, 263–274. [Google Scholar] [CrossRef]
- Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.C.; Thom, D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 1973, 32, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.R.; Rees, D.A.; Thom, D.; Boiyd, J. Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydr. Res. 1978, 66, 145–154. [Google Scholar] [CrossRef]
- Branccini, I.; Grasso, R.P.; Perez, S. Conformational and configuration features of acidic polysaccharides and their interactions with calcium ions: A molecular modelling investigation. Carbohydr. Res. 1999, 317, 119–130. [Google Scholar] [CrossRef]
- Branccini, I.; Perez, S. Molecular basis of Ca2+—induced gelation in alginate and pectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- Siew, C.K.; Williams, P.A. New insights into mechanism of gelation of alginate and pectin: Charge annihilation and reversal mechanism. Biomacromolecules 2005, 6, 963–969. [Google Scholar] [CrossRef]
- Manning, G.S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions. J. Chem. Phys. 1969, 51, 924–933. [Google Scholar] [CrossRef]
- Porasso, R.D.; Benegas, J.C.; van den Hoop, M.A.G.T.; Paoletti, S. Chemical bonding of divalent counterions to linear polyelectrolytes: Theoretical treatment within the counterion condensation theory. Phys. Chem. Chem. Phys. 2001, 3, 1057–1062. [Google Scholar] [CrossRef]
- Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978, 11, 179–246. [Google Scholar] [CrossRef]
- Rivas, B.L.; Pereira, E.; Moreno-Villoslada, I. Water-soluble polymer–metal ion interactions. Prog. Polym. Sci. 2021, 28, 173–208. [Google Scholar] [CrossRef]
- Benegas, J.C.; Cleven, F.M.J.; van den Hoop, M.A.G.T. Potentiometric titration of poly(acrylic acid) in mixed counterion systems: Chemical binding of Cd ions. Anal. Chim. Acta 1998, 369, 109–114. [Google Scholar] [CrossRef]
- Donati, I.; Cesàro, A.; Paoletti, S. Specific Interactions versus Counterion Condensation. 1. Nongelling Ions/Polyuronate Systems. Biomacromolecules 2006, 7, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Donati, I.; Benegas, J.C.; Cesaro, A.; Paoletti, S. Specific interactions versus counterion condensation. 2. Theoretical treatment within the counterion condensation theory. Biomacromolecules 2006, 7, 1587–1596. [Google Scholar] [CrossRef]
- de Kerchove, A.J.; Elimelech, M. Structural growth and viscoelastic properties of alginate layers in monovalent and divalent salt. Macromolecules 2006, 39, 6558–6564. [Google Scholar] [CrossRef]
- Radeva, T.; Milkova, V.; Petkanchin, I. Structure and Electrical Properties of Polyelectrolyte Multilayers Formed on Anisometric Colloidal Particles. J. Colloid Interface Sci. 2021, 244, 24–30. [Google Scholar] [CrossRef]
- Radeva, T.; Milkova, V.; Petkanchin, I. Electrical properties of multilayers from low- and high-molecular-weight polyelectrolytes. J. Colloid Interface Sci. 2004, 279, 351–356. [Google Scholar] [CrossRef]
- Milkova, V.; Radeva, T. Counterion release from adsorbed highly charged polyelectrolyte: An electrooptical study. J Colloid Interface Sci. 2006, 298, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Kamburova, K.; Milkova, V.; Radeva, T. Complexation of Ferric Oxide Particles with Pectins of Ordered and Random Distribution of Charged Units. Biomacromolecules 2008, 3, 138–145. [Google Scholar]
- Stoylov, S.P. Colloid Electro-Optics; Academic Press: London, UK, 1991; pp. 15–27. [Google Scholar]
- Minakata, A. Dielectric properties of polyelectrolytes. III. Effect of divalent cations on dielectric increment of polyacids. Biopolymers 1972, 11, 1567–1582. [Google Scholar] [CrossRef]
- O’Konski, C.T.; Yoshioka, K.; Orttung, W.H. Electric properties of macromolecules. IV Determination of electric and optical parameters from saturation of electric birefringence in solutions. J. Phys. Chem. 1959, 63, 1558–1565. [Google Scholar] [CrossRef]
- Fixman, M. Charged macromolecules in external fields. I. The sphere. J. Phys. Chem. 1980, 72, 5177. [Google Scholar] [CrossRef]
- Ookubo, N.; Hirai, Y.; Ito, K.; Hayakawa, R. Anisotropic counterion polarizations and their dynamics in aqueous polyelectrolytes as studied by frequency-domain electric birefringence relaxation spectroscopy. Macromolecules 1989, 22, 1359–1366. [Google Scholar] [CrossRef]
- Donati, I.; Paoletti, S. Material Properties of Alginates. In Alginates: Biology and Applications; Rehm, B.H.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; p. 15. [Google Scholar]
- Paoletti, S.; Benegas, J.; Cesaro, A.; Manzini, G. Limiting-laws of polyelectrolyte solutions. Ionic distribution in mixed-valency counterions systems. I: The model. Biophys. Chem. 1991, 41, 73–80. [Google Scholar] [CrossRef]
- Paoletti, S.; Benegas, J.C.; Pantano, S.; Vetere, A. Thermodynamics of the conformational transition of biopolyelectrolytes: The case of specific affinity of counterions. Biopolymers 1999, 50, 705–719. [Google Scholar] [CrossRef]
- Cheng, H.; Cruz, M.O. Adsorption of rod-like polyelectrolytes onto weakly charged surfaces. J. Chem. Phys. 2003, 119, 12635–12644. [Google Scholar] [CrossRef]
- Sens, P.; Joanny, J.-F. Counterion release and electrostatic adsorption. Phys. Rev. Lett. 2000, 84, 4862–4865. [Google Scholar] [CrossRef] [Green Version]
- Zocher, H.; Heller, W. Schillerschichten als Reaktionsprodukte der langsamen Eisenchlorid-Hydrolyse [Iridescent layers produced by slow hydrolysis of iron chloride]. Z. Anorg. Allg. Chem. 1930, 186, 75–96. [Google Scholar] [CrossRef]
- Stoylov, S.P. Colloid electro-optics. Electrically induced optical phenomena in disperse systems. Adv. Colloid Interface Sci. 1971, 3, 45–110. [Google Scholar] [CrossRef]
- Perrin, F. Mouvement brownien d’un ellipsoide. I. Dispersion dielectrique pour des molecules ellipsoidales. J. Phys. Radium 1934, 5, 497–511. [Google Scholar] [CrossRef]
Alginate Sample | L [nm] | b [nm] | ξ | βManning | νcr,exp [kHz] | νcr, theor, [kHz] | L* [nm] | Gresidues |
---|---|---|---|---|---|---|---|---|
A082 | 1643 | 0.47 | 1.51 | 0.66 | 5 | 0.046 | 158 | 1912 |
A122 | 1070 | 0.48 | 1.49 | 0.67 | 3 | 0.042 | 204 | 1604 |
A047 | 959 | 0.37 | 1.92 | 0.52 | 17 | 0.136 | 86 | 1414 |
Alginate Sample | A082 | A122 | A047 |
---|---|---|---|
Mn, kDa | 341.70 | 309.90 | 227.40 |
Mw, kDa | 671.80 | 687.30 | 496.70 |
Mz, kDa | 958.30 | 1081.40 | 705.00 |
Polydispersity index | 1.97 | 2.22 | 2.18 |
M/G ratio | 0.82 | 1.22 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milkova, V. Comparative Electrokinetic Study of Alginate-Coated Colloidal Particles. Gels 2023, 9, 493. https://doi.org/10.3390/gels9060493
Milkova V. Comparative Electrokinetic Study of Alginate-Coated Colloidal Particles. Gels. 2023; 9(6):493. https://doi.org/10.3390/gels9060493
Chicago/Turabian StyleMilkova, Viktoria. 2023. "Comparative Electrokinetic Study of Alginate-Coated Colloidal Particles" Gels 9, no. 6: 493. https://doi.org/10.3390/gels9060493
APA StyleMilkova, V. (2023). Comparative Electrokinetic Study of Alginate-Coated Colloidal Particles. Gels, 9(6), 493. https://doi.org/10.3390/gels9060493