Application of Hydrogels in the Device of Ophthalmic Iontophoresis: Theory, Developments and Perspectives
Abstract
:1. Introduction
2. Physiological and Anatomical Barriers Facing Ocular Drug Delivery
3. Theory and Development of Iontophoresis
4. Application of Traditional Iontophoresis Device in Ophthalmic Practice
4.1. CCI
4.2. EGDS
5. Drawbacks of Conventional Iontophoresis Devices
6. Application of Hydrogel Iontophoresis
7. Developments and Application of Hydrogel in Ophthalmic Iontophoresis
7.1. Application of Hydrogel in Iontophoresis
7.1.1. The Effectiveness and Safety of Hydrogel-Based Ionophoresis
7.1.2. The Concentration and Distribution of Drugs in Hydrogel Iontophoresis
7.2. Updates of Hydrogel Probes in Iontophoresis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joseph, M.; Trinh, H.M.; Cholkar, K.; Pal, D.; Mitra, A.K. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin. Drug Deliv. 2017, 14, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Pu, N.; Li, S.-Y.; Wang, Y.-G.; Tao, Y. Application of iontophoresis in ophthalmic practice: An innovative strategy to deliver drugs into the eye. Drug Deliv. 2023, 30, 2165736. [Google Scholar] [CrossRef]
- Yavuz, B.; Kompella, U.B. ocular drug delivery. Handb. Exp. Pharmacol. 2017, 242, 57–93. [Google Scholar]
- Behar-Cohen, F.; El Aouni, A.; Gautier, S.; David, G.; Davis, J.; Chapon, P.; Parel, J. Transscleral Coulomb-controlled Iontophoresis of Methylprednisolone into the Rabbit Eye: Influence of Duration of Treatment, Current Intensity and Drug Concentration on Ocular Tissue and Fluid Levels. Exp. Eye Res. 2002, 74, 51–59. [Google Scholar] [CrossRef]
- Zhao, F.; Fan, S.; Ghate, D.; Romanova, S.; Bronich, T.K.; Zhao, S. A Hydrogel Ionic Circuit Based High-Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. Adv. Mater. 2022, 34, 2107315. [Google Scholar] [CrossRef]
- Eljarrat-Binstock, E.; Raiskup, F.; Frucht-Pery, J.; Domb, A.J. Hydrogel probe for iontophoresis drug delivery to the eye. J. Biomater. Sci. Polym. Ed. 2004, 15, 397–413. [Google Scholar] [CrossRef]
- Frucht-Pery, J.; Mechoulam, H.; Siganos, C.S.; Ever-Hadani, P.; Shapiro, M.; Domb, A. Iontophoresis–gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp. Eye Res. 2004, 78, 745–749. [Google Scholar] [CrossRef]
- Eljarrat-Binstock, E.; Raiskup, F.; Stepensky, D.; Domb, A.J.; Frucht-Pery, J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Investig. Opthalmology Vis. Sci. 2004, 45, 2543–2548. [Google Scholar] [CrossRef] [Green Version]
- Frucht-Pery, J.; Raiskup, F.; Mechoulam, H.; Shapiro, M.; Eljarrat-Binstock, E.; Domb, A. Iontophoretic Treatment of Experimental Pseudomonas Keratitis in Rabbit Eyes Using Gentamicin-Loaded Hydrogels. Cornea 2006, 25, 1182–1186. [Google Scholar] [CrossRef]
- Eljarrat–Binstock, E.; Domb, A.J.; Orucov, F.; Frucht–Pery, J.; Pe’er, J. Methotrexate Delivery to the Eye Using Transscleral Hydrogel Iontophoresis. Curr. Eye Res. 2007, 32, 639–646. [Google Scholar] [CrossRef]
- Eljarrat-Binstock, E.; Raiskup, F.; Frucht-Pery, J.; Domb, A.J. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J. Control. Release 2005, 106, 386–390. [Google Scholar] [CrossRef]
- Eljarrat-Binstock, E.; Domb, A.J.; Orucov, F.; Dagan, A.; Frucht-Pery, J.; Pe’er, J. In Vitro and In Vivo Evaluation of Carboplatin Delivery to the Eye Using Hydrogel-Iontophoresis. Curr. Eye Res. 2008, 33, 269–275. [Google Scholar] [CrossRef]
- Eljarrat-Binstock, E.; Orucov, F.; Aldouby, Y.; Frucht-Pery, J.; Domb, A.J. Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J. Control. Release 2008, 126, 156–161. [Google Scholar] [CrossRef]
- Wels, M.; Roels, D.; Raemdonck, K.; De Smedt, S.; Sauvage, F. Challenges and strategies for the delivery of biologics to the cornea. J. Control. Release 2021, 333, 560–578. [Google Scholar] [CrossRef]
- Cholkar, K.; Patel, S.P.; Vadlapudi, A.D.; Mitra, A.K. Novel Strategies for Anterior Segment Ocular Drug Delivery. J. Ocul. Pharmacol. Ther. 2013, 29, 106–123. [Google Scholar] [CrossRef] [Green Version]
- Mofidfar, M.; Abdi, B.; Ahadian, S.; Mostafavi, E.; Desai, T.A.; Abbasi, F.; Sun, Y.; Manche, E.E.; Ta, C.N.; Flowers, C.W. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int. J. Pharm. 2021, 607, 120924. [Google Scholar] [CrossRef]
- Li, S.K.; Hao, J. Transscleral passive and iontophoretic transport: Theory and analysis. Expert Opin. Drug Deliv. 2018, 15, 283–299. [Google Scholar] [CrossRef]
- Loftsson, T.; Sigurđsson, H.H.; Konráđsdóttir, F.; Gísladóttir, S.; Jansook, P.; Stefánsson, E. Topical drug delivery to the posterior segment of the eye: Anatomical and physiological considerations. Pharmazie 2008, 63, 171–179. [Google Scholar]
- Kim, S.H.; Lutz, R.J.; Wang, N.S.; Robinson, M.R. Transport Barriers in Transscleral Drug Delivery for Retinal Diseases. Ophthalmic Res. 2007, 39, 244–254. [Google Scholar] [CrossRef]
- Nayak, K.; Misra, M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother. 2018, 107, 1564–1582. [Google Scholar] [CrossRef]
- Törnquist, P.; Alm, A.; Bill, A. Permeability of ocular vessels and transport across the blood-retinal-barrier. Eye 1990, 4 Pt 2, 303–309. [Google Scholar] [CrossRef]
- Coca-Prados, M. The Blood-Aqueous Barrier in Health and Disease. Eur. J. Gastroenterol. Hepatol. 2014, 23, S36–S38. [Google Scholar] [CrossRef]
- Thrimawithana, T.R.; Young, S.; Bunt, C.R.; Green, C.; Alany, R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today 2011, 16, 270–277. [Google Scholar] [CrossRef]
- Moisseiev, E.; Loewenstein, A. Drug Delivery to the Posterior Segment of the Eye. Dev. Ophthalmol. 2017, 58, 87–101. [Google Scholar] [CrossRef]
- Dhote, V.; Bhatnagar, P.; Mishra, P.K.; Mahajan, S.C.; Mishra, D.K. Iontophoresis: A potential emergence of a transdermal drug delivery system. Sci. Pharm. 2012, 80, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Horwath-Winter, J.; Schmut, O.; Haller-Schober, E.-M.; Gruber, A.; Rieger, G. Iodide iontophoresis as a treatment for dry eye syndrome. Br. J. Ophthalmol. 2005, 89, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Souied, E.H.; Reid SN, M.; Piri, N.I.; Lerner, L.E.; Nusinowitz, S.; Farber, D.B. Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Exp. Eye Res. 2008, 87, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Hobden, J.A.; James, J.; Reidy, T.R.J.O.; Insler, M.S.; Hill, J.M. CiprofloxQcin Iontophoresis for Aminoglycoside-Resistant Pseudomonol Kerafifis. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1940–1944. [Google Scholar]
- Madni, A.; Rahem, M.A.; Tahir, N.; Sarfraz, M.; Jabar, A.; Rehman, M.; Kashif, P.M.; Badshah, S.F.; Khan, K.U.; Santos, H.A. Non-invasive strategies for targeting the posterior segment of eye. Int. J. Pharm. 2017, 530, 326–345. [Google Scholar] [CrossRef]
- Eljarrat-Binstock, E.; Domb, A.J. Iontophoresis: A non-invasive ocular drug delivery. J. Control. Release 2006, 110, 479–489. [Google Scholar] [CrossRef]
- Molokhia, S.A.; Jeong, E.-K.; Higuchi, W.I.; Li, S.K. Examination of penetration routes and distribution of ionic permeants during and after transscleral iontophoresis with magnetic resonance imaging. Int. J. Pharm. 2007, 335, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Ragit, R.; Fulzele, P.; Rathi, N.V.; Thosar, N.R.; Khubchandani, M.; Malviya, N.S.; Das, S. Iontophoresis as an Effective Drug Delivery System in Dentistry: A Review. Cureus 2022, 14, e30658. [Google Scholar] [CrossRef]
- Wanasathop, A.; Li, S.K. Iontophoretic Drug Delivery in the Oral Cavity. Pharmaceutics 2018, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Molokhia, S.A.; Jeong, E.-K.; Higuchi, W.I.; Li, S.K. Examination of barriers and barrier alteration in transscleral iontophoresis. J. Pharm. Sci. 2008, 97, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Gratieri, T.; Santer, V.; Kalia, Y. Basic principles and current status of transcorneal and transscleral iontophoresis. Expert Opin. Drug Deliv. 2016, 14, 1091–1102. [Google Scholar] [CrossRef]
- Behar-Cohen, F.F.; Parel, J.-M.; Pouliquen, Y.; Thillaye-Goldenberg, B.; Goureau, O.; Heydolph, S.; Courtois, Y.; DE Kozak, Y. Iontophoresis of dexamethasone in the treatment of endotoxin-induced-uveitis in rats. Exp. Eye Res. 1997, 65, 533–545. [Google Scholar] [CrossRef]
- Hayden, B.; Jockovich, M.-E.; Murray, T.G.; Kralinger, M.T.; Voigt, M.; Hernandez, E.; Feuer, W.; Parel, J.-M. Iontophoretic delivery of carboplatin in a murine model of retinoblastoma. Investig. Opthalmology Vis. Sci. 2006, 47, 3717–3721. [Google Scholar] [CrossRef]
- Kralinger, M.T.; Voigt, M.; Kieselbach, G.F.; Hamasaki, D.; Hayden, B.C.; Parel, J.-M. Ocular Delivery of Acetylsalicylic Acid by Repetitive Coulomb-Controlled Iontophoresis. Ophthalmic Res. 2003, 35, 102–110. [Google Scholar] [CrossRef]
- Hayden, B.C.; Jockovich, M.-E.; Murray, T.G.; Voigt, M.; Milne, P.; Kralinger, M.; Feuer, W.J.; Hernandez, E.; Parel, J.-M. Pharmacokinetics of systemic versus focal carboplatin chemotherapy in the rabbit eye: Possible implication in the treatment of retinoblastoma. Investig. Opthalmology Vis. Sci. 2004, 45, 3644–3649. [Google Scholar] [CrossRef]
- Arboleda, A.; Kowalczuk, L.; Savoldelli, M.; Klein, C.; Ladraa, S.; Naud, M.-C.; Aguilar, M.C.; Parel, J.-M.; Behar-Cohen, F. Evaluating in vivo delivery of riboflavin with coulomb-controlled iontophoresis for corneal collagen cross-linking: A pilot study. Investig. Opthalmology Vis. Sci. 2014, 55, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Voigt, M.; Kralinger, M.; Kieselbach, G.; Chapon, P.; Anagnoste, S.; Hayden, B.; Parel, J.-M. Ocular aspirin distribution: A comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Investig. Opthalmology Vis. Sci. 2002, 43, 3299–3306. [Google Scholar]
- Patane, M.A.; Cohen, A.; From, S.; Torkildsen, G.; Welch, D.; Ousler, G.W., III. Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: Results of a randomized clinical trial. Clin. Ophthalmol. 2011, 5, 633–643. [Google Scholar]
- Sheppard, J.; Garg, S.; Lievens, C.; Wirostko, B.; Korenfeld, M.; Raizman, M.; Foster, C.S. Iontophoretic dexamethasone phosphate compared to topical prednisolone acetate 1% for noninfectious anterior segment uveitis. Am. J. Ophthalmol. 2020, 211, 76–86. [Google Scholar] [CrossRef]
- Cohen, A.E.; Assang, C.; Patane, M.A.; From, S.; Korenfeld, M. Evaluation of Dexamethasone Phosphate Delivered by Ocular Iontophoresis for Treating Noninfectious Anterior Uveitis. Ophthalmology 2012, 119, 66–73. [Google Scholar] [CrossRef]
- Barza, M.; Peckman, C.; Baum, J. Transscleral iontophoresis of cefazolin, ticarcillin, and gentamicin in the rabbit. Ophthalmology 1986, 93, 133–139. [Google Scholar] [CrossRef]
- Asahara, T.; Shinomiya, K.; Naito, T.; Shiota, H. Induction of genes into the rabbit eye by iontophoresis. Nippon. Ganka Gakkai Zasshi 1999, 103, 178–185. [Google Scholar] [CrossRef]
- Patane, M.A.; Schubert, W.; Sanford, T.; Gee, R.; Burgos, M.; Isom, W.P.; Ruiz-Perez, B. Evaluation of Ocular and General Safety Following Repeated Dosing of Dexamethasone Phosphate Delivered by Transscleral Iontophoresis in Rabbits. J. Ocul. Pharmacol. Ther. 2013, 29, 760–769. [Google Scholar] [CrossRef]
- Grossman, R.; Lee, D.A. Transscleral and transcorneal iontophoresis of ketoconazole in the rabbit eye. Ophthalmology 1989, 96, 724–729. [Google Scholar] [CrossRef]
- Halhal, M.; Renard, G.; Courtois, Y.; BenEzra, D.; Behar-Cohen, F. Iontophoresis: From the lab to the bed side. Exp. Eye Res. 2004, 78, 751–757. [Google Scholar] [CrossRef]
- Nose, I.; Parel, J.; Lee, W.; Cohen, F.; DeKosac, Y.; Rowaan, C.; Paldano, A.; Jallet, V.; Soderberg, P.; Davis, J. Ocular Coulomb controlled iontophoresis (OCCI). Investig. Ophthalmol. Vis. Sci. 1996, 37, 185. [Google Scholar]
- Baker, A.E.G.; Cui, H.; Ballios, B.G.; Ing, S.; Yan, P.; Wolfer, J.; Wright, T.; Dang, M.; Gan, N.Y.; Cooke, M.J.; et al. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute. Biomaterials 2021, 271, 120750. [Google Scholar] [CrossRef]
- Monti, D.; Saccomani, L.; Chetoni, P.; Burgalassi, S.; Saettone, M.F. Effect of iontophoresis on transcorneal permeation ‘in vitro’ of two b-blocking agents, and on corneal hydration. Int. J. Pharm. 2003, 250, 423–429. [Google Scholar] [CrossRef]
- Lam, T.T.; Fu, J.; Tso, M.O. A histopathologic study of retinal lesions inflicted by transscleral iontophoresis. Graefes Arch. Clin. Exp. Ophthalmol. 1991, 229, 389–394. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Torres-Luna, C.; Fan, X.; Domszy, R.; Hu, N.; Wang, N.S.; Yang, A. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Eur. J. Pharm. Sci. 2020, 154, 105503. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef]
- Dannert, C.; Stokke, B.T.; Dias, R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef] [Green Version]
- Demeter, M.; Călina, I.; Scărișoreanu, A.; Micutz, M. E-Beam Cross-Linking of Complex Hydrogels Formulation: The Influence of Poly(Ethylene Oxide) Concentration on the Hydrogel Properties. Gels 2022, 8, 27. [Google Scholar] [CrossRef]
- Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649. [Google Scholar] [CrossRef]
- Jiang, Y.; Krishnan, N.; Heo, J.; Fang, R.H.; Zhang, L. Nanoparticle–hydrogel superstructures for biomedical applications. J. Control. Release 2020, 10, 505–521. [Google Scholar] [CrossRef]
- Gun’ko, V.M.; Savina, I.N.; Mikhalovsky, S.V. Properties of Water Bound in Hydrogels. Gels 2017, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Vo, R.; Hsu, H.-H.; Jiang, X. Hydrogel facilitated bioelectronic integration. Biomater. Sci. 2021, 9, 23–37. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials 2016, 111, 40–54. [Google Scholar] [CrossRef]
- Khan, F.; Atif, M.; Haseen, M.; Kamal, S.; Khan, M.S.; Shahid, S.; Nami, S.A.A. Synthesis, classification and properties of hydrogels: Their applications in drug delivery and agriculture. J. Mater. Chem. B 2022, 10, 170–203. [Google Scholar] [CrossRef]
- Zustiak, S.P.; Leach, J.B. Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels. Biotechnol. Bioeng. 2011, 108, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Abune, L.; Wang, Y. Affinity Hydrogels for Protein Delivery. Trends Pharmacol. Sci. 2021, 42, 300–312. [Google Scholar] [CrossRef]
- Tong, X.; Lee, S.; Bararpour, L.; Yang, F. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation. Macromol. Biosci. 2015, 15, 1679–1686. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, A.M.; Frazar, E.M.; Klaus, M.V.X.; Paul, P.; Hilt, J.Z. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv. Healthc. Mater. 2022, 11, 2101820. [Google Scholar] [CrossRef]
- Desai, S.D.; Blanchard, J. Evaluation of pluronic F127-based sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model. J. Pharm. Sci. 1998, 87, 1190–1195. [Google Scholar] [CrossRef]
- Souza, J.G.; Dias, K.; Pereira, T.A.; Bernardi, D.S.; Lopez, R.F.V. Topical delivery of ocular therapeutics: Carrier systems and physical methods. J. Pharm. Pharmacol. 2014, 66, 507–530. [Google Scholar] [CrossRef]
- Frucht-Pery, J.; Solomon, A.; Doron, R. Efficacy of iontophoresis in the rat cornea. Graefes Arch. Clin. Exp. Ophthalmol. 1996, 234, 765–769. [Google Scholar] [CrossRef]
- Grossman, R.E.; Chu, D.F.; Lee, D.A. Regional ocular gentamicin levels after transcorneal and transscleral iontophoresis. Investig. Ophthalmol. Vis. Sci. 1990, 31, 909. [Google Scholar]
- Frucht-Pery, J.; Goren, D.; Solomon, A.; Siganos, C.S.; Mechoulam, H.; Solomon, A.; Ever-Hadani, P.; Shapiro, M. The distribution of gentamicin in the rabbit cornea following iontophoresis to the central cornea. J. Ocul. Pharmacol. Ther. 1999, 15, 251–256. [Google Scholar] [CrossRef]
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea: Structure, Function, and Development. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar]
- Kashyap, N.; Kumar, N.; Kumar, M.N.V.R. Hydrogels for Pharmaceutical and Biomedical Applications. Crit. Rev. Ther. Drug Carr. Syst. 2005, 22, 107–150. [Google Scholar] [CrossRef]
- Velez, G.; Yuan, P.; Sung, C.; Tansey, G.; Reed, G.F.; Chan, C.-C.; Nussenblatt, R.B.; Robinson, M.R. Pharmacokinetics and toxicity of intravitreal chemotherapy for primary intraocular lymphoma. Arch. Ophthalmol. 2001, 119, 1518–1524. [Google Scholar] [CrossRef]
- Biesheuvel, P.M.; Porada, S.; Dykstra, J.E. The difference between Faradaic and non-Faradaic electrode processes. arXiv 2018, arXiv:1809.02930. [Google Scholar]
- Godula-Jopek, A.; Stolten, D. Hydrogen Production: By Electrolysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015. [Google Scholar]
- Abe, I. Energy Carriers and Conversion Systems with Emphasis on Hydrogen; Eolss Publications: Abu Dhabi, United Arab Emirates, 2009. [Google Scholar]
- Parkinson, T.M.; Ferguson, E.; Febbraro, S.; Bakhtyari, A.; King, M.; Mundasad, M. Tolerance of ocular iontophoresis in healthy volunteers. J. Ocul. Pharmacol. Ther. 2003, 19, 145–151. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Qi, Y.; Huang, D.; Yang, M.; Yu, X.; Hu, Y.; Li, Z. An ocular iontophoretic device using PEDOT electrode for local drug delivery. Sens. Actuators B Chem. 2016, 237, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
Hydro Material | Delivery of Substances | Route | Experimental Purpose | Current Intensity and Application Time | The Distribution Pattern of Delivered Substances in the Eye | Iontophoresis Results | Reference |
---|---|---|---|---|---|---|---|
Hydroxyethyl methacrylate gel discs | Gentamicin | Transcorneal | The effect of gentamicin penetrating rabbit cornea using hydrogel iontophoresis. | 0, 0.1, 0.3, and 0.6 mA for 10 and 60 s, respectively | Very small or no concentrations of the drug were discovered in the anterior chambers of rabbits treated with current intensity of 0.1 mA. | Achieved therapeutic concentrations of gentamicin into the cornea | [7] |
Transcorneal | To evaluate the transcorneal iontophoresis of gentamicin by drug carrying water gel probe. | 1 mA for 60 s | Peak gentamicin concentrations in the cornea and in the aqueous humor were reached after 2 h. The peak gentamicin concentrations after a single iontophoresis treatment were 12 to 15 times higher than those obtained by topical eye drop instillation. | The medication in the cornea can maintain treatment levels for more than 8 h | [8] | ||
Transcorneal | The effects of hydrogel probe in the application of low current iontophoresis to deliver gentamicin to the eyes. | 1 mA for 240 s, 0.5 and 1 mA for 60 and 120 s | High gentamicin concentrations were found in the retina and sclera 4 h after the iontophoretic. Meanwhile, there were lower concentrations in the cornea, aqueous humor, and vitreous. | High drug concentration can be obtained at posterior segments of the eye; 0.5 and 1 mA for 60 and 120 s is safe in terms of current protocols. | [6] | ||
Transcorneal | The efficacy of gentamicin loaded hydrogel iontophoresis system in the treatment of pseudomonas keratitis in rabbits. | 0.5 and 0.2 mA for 60 s, repeat it three times at intervals of 3.5 h | None | A short time iontophoretic treatment using gentamicin loaded hydrogels has potential clinical value in treating corneal infections. | [9] | ||
Methotrexate | Transscleral | To evaluate the permeability and distribution of methotrexate in the ocular structure after hydrogel iontophoresis. | Low density: 1.0 mA for 2 min; High density: 1.0 mA for 5 min | After iontophoresis with low current density, the therapeutic drug levels were maintained at the sclera and retina for at least 8 h, and the aqueous humor for 2 h. When the current density was increased, the concentration of the vitreous body doubled, and the concentration of the retina and sclera increased by 8–20 times. | A potential clinical value in treating ocular inflammatory diseases and intraocular lymphoma. | [10] | |
Dexamethasone | Transcleral, transcorneal | To evaluate the penetration of dexamethasone into the eyes after hydrogel iontophoresis. | 1 mA for 1 or 4 min | After 1 min of single corneal iontophoresis, the level of dexamethasone in the cornea was 30 times higher than that of eye drops. After 4 min of transscleral iontophoresis, high concentrations of drugs were obtained in the anterior and posterior segments of the eye. | A short time current non-invasive iontophoretic treatment using dexamethasone-loaded hydrogels has potentials in increasing drug penetration to the anterior and posterior segments. | [11] | |
Carboplatin | Transsclera | The penetration efficiency of carboplatin in the hydrogel iontophoresis in vivo and in vitro. | 0, 1, and 3 mA current for 10 min | Higher levels of drugs were found in the sclera and retina, while lower levels were found in eye fluids. | Passive carboplatin diffusion from loaded hydrogels inserted in the lower cul-de-sac may be a potential clinical treatmentfor intraocular retinoblastoma. | [12] | |
Positively or negatively charged fluorescent nanoparticles | Transscleral, Transcorneal | The penetration efficiency of charged fluorescent nanoparticles into rabbit eyes was evaluated using hydrogel iontophoresis. | 1.5 mA for 5 min | The positively charged particles demonstrated better penetration abilities into inner ocular tissues compared to the negatively charged particles. | The use of charged nanoparticles as ion carriers for drug delivery can provide extended treatment activity beyond 12 h after treatment. | [13] | |
PEG hydrogel | Dextran-40kDa | Transscleral | To determine whether the high-intensity ion current safely applied by our HIC-based device could be enhanced by hydrogel iontophoresis. | 100 mA (87 mA cm−2) for 20 min | High-intensity iontophoresis increased the amount of dextran delivered into the vitreous by 122 times. A significant concentration of dextran presented in all tissue segments from conjunctive/sclera to vitreous. | Compared to traditional iontophoresis devices, the hydrogels device achieved over 100-time enhancements. High-intensity currents also increased the drug penetration into deeper ocular tissues. | [5] |
Bevacizumab | Transscleral | 100 mA (87 mA cm−2) for 20 min | Bevacizumab was delivered into the vitreous, similar to the amount delivered by intravitreal injection. A diffusion-like concentration gradient was established from conjunctiva to vitreous. |
Development of Hydrogels in Iontophoresis Devices | Experimental Animal | Route | Maximum Current Density (or Current) and Application Time | Ocular Damage | Cause of Damage | Hydrogel Synthesis Method | The Function of Hydrogel | Advantages over Conventional Iontophoresis Devices | Reference |
---|---|---|---|---|---|---|---|---|---|
Conventional iontophoresis device | Rats | Transcorneal | 2.11 mA/cm2 for 4 or 10 min | No | None | None | None | None | [40] |
Rabbits | Transscleral | 4 mA/cm2 for 4 or 10 min | No | None | [4] | ||||
Rabbits | Transscleral | 5 mA/cm2 for 10 min | A slight injection of conjunctiva | The negative pressure applied on the eye during CCI, mechanical damage | [38] | ||||
Rabbits | Transscleral | 5 mA/cm2 for 10 min | A slight injection of conjunctiva | The negative pressure applied on the eye during CCI, mechanical damage | [41] | ||||
Rats | Transscleral | 1.2 mA/cm2 for 4 min | Transient conjunctival vasodilatation | The negative pressure applied on the eye during CCI, mechanical damage | [36] | ||||
Mice | Transscleral, Transcorneal | greater than 5.14 mA/cm2 for 2 to 5 min | Slight damage to the corneal epithelium and/or minor scleral burn-like yellowing | EC reaction | [37] | ||||
Rabbits | Transscleral | 5 mA/cm2 for 20 min | A slight injection of conjunctiva and transient swelling of the conjunctiva | EC reaction or the negative pressure applied on the eye during CCI, mechanical damage | [39] | ||||
Application of first-generation hydrogel | Rabbits | Transcorneal | 0.6 mA for 10 and 60 s | No | None | Polymerize at room temperature, lyophilization dehydrated, hydrate | Soft, slow-release, drug-loaded, reduces eye infections | Reduces conjunctival injection and swelling caused by negative pressure or mechanical damage due to the eye cup during iontophoresis | [7] |
Rabbits | Transcorneal | 5.1 mA/cm2 for 60 s | No | None | [8] | ||||
Rabbits | Transcorneal, Transscleral | 1 mA for 240 s | Mild reversible effect including stromal edema and epithelial defects | EC reaction | [6] | ||||
Rabbits | Transcorneal | 0.5 mA for 60 s | No | None | [9] | ||||
Rabbits | Transscleral | 5 mA/cm2 for 5 min | No | None | [10] | ||||
Rabbits | Transcleral, transcorneal | 5.1 mA/cm2 for 1 or 4 min | No | None | [11] | ||||
Rabbits | Transsclera | 5 mA/cm2 for 10 min | No | None | [12] | ||||
Rabbits | Transscleral, Transcorneal | 6 mA/cm2 for 5 min | No | None | [13] | ||||
Application of second-generation hydrogel | Rabbits | Transscleral | 87 mA cm−2 for 20 min | No | None | photocrosslinking | ATPs | Reduce damage caused by EC reaction during iontophoresis | [5] |
Rabbits | Transscleral | No | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Pu, N.; Li, S.-Y.; Zhao, N.; Song, Z.-M.; Tao, Y. Application of Hydrogels in the Device of Ophthalmic Iontophoresis: Theory, Developments and Perspectives. Gels 2023, 9, 519. https://doi.org/10.3390/gels9070519
Wei D, Pu N, Li S-Y, Zhao N, Song Z-M, Tao Y. Application of Hydrogels in the Device of Ophthalmic Iontophoresis: Theory, Developments and Perspectives. Gels. 2023; 9(7):519. https://doi.org/10.3390/gels9070519
Chicago/Turabian StyleWei, Dong, Ning Pu, Si-Yu Li, Na Zhao, Zong-Ming Song, and Ye Tao. 2023. "Application of Hydrogels in the Device of Ophthalmic Iontophoresis: Theory, Developments and Perspectives" Gels 9, no. 7: 519. https://doi.org/10.3390/gels9070519
APA StyleWei, D., Pu, N., Li, S. -Y., Zhao, N., Song, Z. -M., & Tao, Y. (2023). Application of Hydrogels in the Device of Ophthalmic Iontophoresis: Theory, Developments and Perspectives. Gels, 9(7), 519. https://doi.org/10.3390/gels9070519