Analysis of Flow Past a Double-Slanted Ahmed Body
Abstract
:1. Introduction
2. Simulation Details
2.1. Geometry
2.2. Meshes
2.3. Numerical Setup
2.4. Grid Convergence and Comparison with Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
DES | Detached-Eddy Simulations |
IDDES | Improved Delayed Detached-Eddy Simulations |
LES | Large-Eddy Simulations |
PISO | Pressure-Implicit with Splitting of Operators |
RANS | Reynolds-Averaged Navier–Stokes |
SIMPLE | Semi-Implicit Method for Pressure-Linked Equations |
References
- Bonnavion, G.; Cadot, O.; Évrard, A.; Herbert, V.; Parpais, S.; Vigneron, R.; Délery, J. On multistabilities of real car’s wake. J. Wind Eng. Ind. Aerodyn. 2017, 164, 22–33. [Google Scholar] [CrossRef]
- Avadiar, T.; Thompson, M.; Sheridan, J.; Burton, D. Characterisation of the wake of the DrivAer estate vehicle. J. Wind Eng. Ind. Aerodyn. 2018, 177, 242–259. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Ramm, G.; Faltin, G. Some salient features of the time-averaged ground vehicle wake. SAE Trans. 1984, 93, 473–503. [Google Scholar]
- Britcher, C.P.; Alcorn, C.W. Interference-free measurements of the subsonic aerodynamics of slanted-base ogive cylinders. AIAA J. 1991, 29, 520–525. [Google Scholar] [CrossRef]
- Morel, T. The effect of base slant on the flow pattern and drag of three-dimensional bodies with blunt ends. In Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles; Springer: Boston, MA, USA, 1978; pp. 191–226. [Google Scholar]
- Bulathsinghala, D.; Jackson, R.; Wang, Z.; Gursul, I. Afterbody vortices of axisymmetric cylinders with a slanted base. Exp. Fluids 2017, 58, 60. [Google Scholar] [CrossRef]
- Rossitto, G.; Sicot, C.; Ferrand, V.; Borée, J.; Harambat, F. Influence of afterbody rounding on the pressure distribution over a fastback vehicle. Exp. Fluids 2016, 57, 43. [Google Scholar] [CrossRef]
- Rossitto, G.; Sicot, C.; Ferrand, V.; Borée, J.; Harambat, F. Aerodynamic performances of rounded fastback vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1211–1221. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Mansor, S. Rear-roof spoiler effect on the aerodynamic drag performance of a simplified hatchback model. J. Phys. Conf. Ser. 2017, 822, 012008. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Zhu, H.; Xiao, H. Aerodynamic drag reduction and flow control of Ahmed body with flaps. Adv. Mech. Eng. 2017, 9, 1687814017711390. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Agelin-Chaab, M. Investigation of the wake flow around the elliptical Ahmed body using detached Eddy simulation. Int. J. Heat Fluid Flow 2023, 101, 109125. [Google Scholar] [CrossRef]
- Tran, T.H.; Hijikuro, M.; Anyoji, M.; Uchida, T.; Nakashima, T.; Shimizu, K. Surface flow and aerodynamic drag of Ahmed body with deflectors. Exp. Therm. Fluid Sci. 2023, 145, 110887. [Google Scholar] [CrossRef]
- Maine, M.; El Oumami, M.; Bouksour, O. Aerodynamic Drag Reduction Around Vehicles Using a Curved Deflector. Int. J. Integr. Eng. 2023, 15, 24–36. [Google Scholar] [CrossRef]
- Kamacı, C.; Kaya, K. Numerical Investigation of Aerodynamic Properties of Ahmed Body for Different Rear Slanted Surface Configurations. Eur. J. Sci. Technol. 2021, 469–475. [Google Scholar] [CrossRef]
- Krajnovic, S. 1020 Numerical Study of Drag Reduction of Generic Vehicle Body Using Impinging Devices. In Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF), Nagoya, Japan, 17–21 September 2013; pp. 1020-1–1020-6. [Google Scholar]
- Viswanathan, H. Aerodynamic performance of several passive vortex generator configurations on an Ahmed body subjected to yaw angles. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 131. [Google Scholar] [CrossRef]
- Koppa Shivanna, N.; Ranjan, P.; Clement, S. The effect of rear cavity modifications on the drag and flow field topology of a square back Ahmed body. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 1849–1863. [Google Scholar] [CrossRef]
- Huminic, A.; Huminic, G. Aerodynamic study of a generic car model with wheels and underbody diffuser. Int. J. Automot. Technol. 2017, 18, 397–404. [Google Scholar] [CrossRef]
- Huminic, A.; Huminic, G. Aerodynamics of curved underbody diffusers using CFD. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104300. [Google Scholar] [CrossRef]
- Moghimi, P.; Rafee, R. Numerical and experimental investigations on aerodynamic behavior of the Ahmed body model with different diffuser angles. J. Appl. Fluid Mech. 2018, 11, 1101–1113. [Google Scholar] [CrossRef]
- Buscariolo, F.F.; Assi, G.R.; Sherwin, S.J. Computational study on an Ahmed Body equipped with simplified underbody diffuser. J. Wind Eng. Ind. Aerodyn. 2021, 209, 104411. [Google Scholar] [CrossRef]
- Khalighi, B.; Chen, K.H.; Iaccarino, G. Unsteady aerodynamic flow investigation around a simplified square-back road vehicle with drag reduction devices. J. Fluids Eng. 2012, 134, 061101. [Google Scholar] [CrossRef]
- Aljure, D.; Calafell, J.; Baez, A.; Oliva, A. Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects. J. Wind Eng. Ind. Aerodyn. 2018, 174, 225–240. [Google Scholar] [CrossRef]
- Hupertz, B.; Lewington, N.; Mockett, C.; Ashton, N.; Duan, L. Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability-AutoCFD 2: Ford DrivAer Test Case Summary; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Lienhart, H.; Becker, S. Flow and turbulence structure in the wake of a simplified car model. SAE Trans. 2003, 112, 785–796. [Google Scholar]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- He, K.; Minelli, G.; Wang, J.; Gao, G.; Krajnović, S. Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles. J. Wind Eng. Ind. Aerodyn. 2021, 217, 104737. [Google Scholar] [CrossRef]
- Aultman, M.; Disotell, K.; Duan, L.; Metka, M. Computational Modeling of Aerodynamic Design Trends for a Production SUV Subjected to Incremental Design Changes: Roof Spoiler and Underbody Geometry. SAE Int. J. Passeng. Veh. Syst. 2024, 18. [Google Scholar] [CrossRef]
- Patankar, S.V.; Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion; Elsevier: New York, NY, USA, 1983; pp. 54–73. [Google Scholar]
- Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Aultman, M.; Wang, Z.; Duan, L. Effect of time-step size on flow around generic car models. J. Wind Eng. Ind. Aerodyn. 2021, 219, 104764. [Google Scholar] [CrossRef]
- Lienhart, H.; Becker, S. 2003. Available online: https://www.kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC1-05 (accessed on 19 July 2024).
- Ashton, N.; West, A.; Lardeau, S.; Revell, A. Assessment of RANS and DES methods for realistic automotive models. Comput. Fluids 2016, 128, 1–15. [Google Scholar] [CrossRef]
- Graysmith, J.; Baxendale, A.; Howell, J.; Haynes, T. Comparisons between CFD and experimental results for the Ahmed reference model. In Proceedings of the RAeS Conference on Vehicle Aerodynamics, Loughborough, UK, 18–19 July 1994. [Google Scholar]
- Strachan, R.; Knowles, K.; Lawson, N. The vortex structure behind an Ahmed reference model in the presence of a moving ground plane. Exp. Fluids 2007, 42, 659–669. [Google Scholar] [CrossRef]
- Zigunov, F.; Sellappan, P.; Alvi, F. Reynolds number and slant angle effects on the flow over a slanted cylinder afterbody. J. Fluid Mech. 2020, 893, A11. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Yang, Y.; Duan, Z. New omega vortex identification method. Sci. China Phys. Mech. Astron. 2016, 59, 684711. [Google Scholar] [CrossRef]
- Tobak, M.; Peake, D.J. Topology of Three-Dimensional Separated Flows; Technical Report; NASA: Moffett Field, CA, USA, 1981. [Google Scholar]
- Perry, A.; Steiner, T. Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes. J. Fluid Mech. 1987, 174, 233–270. [Google Scholar] [CrossRef]
- Ahmed, D.; Morgans, A. Nonlinear feedback control of bimodality in the wake of a three-dimensional bluff body. Phys. Rev. Fluids 2022, 7, 084401. [Google Scholar] [CrossRef]
Downsweep (Degrees) | Upsweep (Degrees) |
---|---|
40.0 | 0.0 |
35.0 | 7.9 |
30.0 | 14.7 |
25.0 | 20.4 |
20.0 | 25.4 |
15.0 | 29.7 |
10.0 | 33.5 |
5.0 | 36.9 |
0.0 | 40.0 |
Mesh 1 | Mesh 2 | |
---|---|---|
Base Mesh Size (m) | 0.125 | 0.125 |
Ground Refinement (m) | 0.008 | 0.008 |
Body Refinement (m) | 0.002 | 0.002 |
Base Refinement Box (m) | 0.004 | 0.002 |
Small Box (m) | 0.008 | 0.004 |
Medium Box (m) | 0.016 | 0.008 |
Large Box (m) | 0.031 | 0.016 |
minimum (body) | 0.06 | 0.06 |
maximum (body) | 137.58 | 142.39 |
average (body) | ∼4 | ∼4 |
minimum (ground) | 0.08 | 0.05 |
maximum (ground) | 341.10 | 252.42 |
Total cells (millions) | 14.9 | 35.2 |
0 | −0.2624 | 0.2620 |
5 | −0.1242 | 0.2333 |
10 | −0.0779 | 0.2267 |
15 | 0.0057 | 0.2313 |
20 | 0.0829 | 0.2323 |
25 | −0.1694 | 0.2446 |
30 | −0.5319 | 0.2597 |
35 | −0.3106 | 0.2382 |
40 | 0.0020 | 0.2476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aultman, M.; Duan, L. Analysis of Flow Past a Double-Slanted Ahmed Body. Fluids 2025, 10, 35. https://doi.org/10.3390/fluids10020035
Aultman M, Duan L. Analysis of Flow Past a Double-Slanted Ahmed Body. Fluids. 2025; 10(2):35. https://doi.org/10.3390/fluids10020035
Chicago/Turabian StyleAultman, Matthew, and Lian Duan. 2025. "Analysis of Flow Past a Double-Slanted Ahmed Body" Fluids 10, no. 2: 35. https://doi.org/10.3390/fluids10020035
APA StyleAultman, M., & Duan, L. (2025). Analysis of Flow Past a Double-Slanted Ahmed Body. Fluids, 10(2), 35. https://doi.org/10.3390/fluids10020035