Unstable Density-Driven Flow in Fractured Porous Media: The Fractured Elder Problem
Abstract
:1. Introduction
2. Methods
2.1. Conceptual Model
2.2. Fractured Domain Scenarios
2.3. Governing Equations
2.4. The Rayleigh Number
2.5. The Average Sherwood Number
2.6. The Simulation Tool: COMSOL Multiphysics®
3. Results and Discussion
3.1. Verification of the COMSOL Model
3.2. Mesh Sensitivity Analysis
3.3. Effect of Fractures on the Onset of Instability
3.4. Effect of Fracture Aperture
3.5. Effect of Fracture Density
4. Conclusions
- (1)
- Embedding fracture networks in the Elder problem increases the mesh sensitivity and bifurcation states of this problem. In other words, by changing the mesh size, the fractured Elder problem has more variation in both the number and shape of the plumes than the non-fractured case.
- (2)
- Fracture networks have a destabilizing impact on the Elder problem. It means that the onset of instability of fractured Elder problem occurs with the value of Rayleigh number lower than 40 which is the critical Rayleigh number of onset of instability.
- (3)
- Concerning how the structural properties of fracture networks control convective flow patterns, we explored the effect of aperture fractures and density of the fracture networks. By enlarging the aperture size in a fractured case of Elder problem, the instability increases at an early time, and since the convective flow in the fractures moves up there would be a higher number of fingers at the beginning. However, the system will be stable at the other times, and the simulation results will be the same for different aperture sizes. In addition, as the fracture density increases, various transient convective modes obtained which are different from the non-fractured case at the beginning; nonetheless, this difference exists until an optimal fracture density, and after that, the high dense fractured scenarios behave similarly to the homogeneous case in fingering processes and plume patterns.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simmons, C.T.; Fenstemaker, T.R.; Sharp, J.M. Variable-density groundwater flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges. J. Contam. Hydrol. 2001, 52, 245–275. [Google Scholar] [CrossRef]
- Diersch, H.-J.G.; Kolditz, O. Variable-density flow and transport in porous media: Approaches and challenges. Adv. Water Resour. 2002, 25, 899–944. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 4th ed.; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ataie-Ashtiani, B.; Simmons, C.T.; Irvine, D.J. Confusion about “Convection”! Groundwater 2018, 56, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Lee, D.; Cho, H.-H.; Lee, J. The onset of double diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: A revised model. J. Por. Media 2016, 19, 31–46. [Google Scholar] [CrossRef]
- Murray, B.T.; Chen, C.F. Double-diffusive convection in a porous medium. J. Fluid Mech. 1989, 201, 147. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Yadav, D.; Mohit, M.B. Linear and nonlinear stability analyses of double-diffusive convection in a porous medium layer saturated in a Maxwell nanofluid with variable viscosity and conductivity. Elixir Mech. Eng. 2015, 79, 30407–30426. [Google Scholar]
- Hoteit, H.; Fahs, M.; Soltanian, M.R. Assessment of CO2 Injectivity during Sequestration in Depleted Gas Reservoirs. Geosciences 2019, 9, 199. [Google Scholar] [CrossRef]
- Islam, A.W.; Lashgari, H.R.; Sephernoori, K. Double diffusive natural convection of CO2 in a brine saturated geothermal reservoir: Study of non-modal growth of perturbations and heterogeneity effects. Geothermics 2014, 51, 325–336. [Google Scholar] [CrossRef]
- Yadav, D.; Kim, M.C. Theoretical and numerical analyses on the onset and growth of convective instabilities in a horizontal anisotropic porous medium. J. Por. Media 2014, 17, 1061–1074. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Graf, T.; Guevara Morel, C.R. Free thermal convection in heterogeneous porous media. Geothermics 2016, 64, 152–162. [Google Scholar] [CrossRef]
- Wooding, R.A.; Tyler, S.W.; White, I. Convection in groundwater below an evaporating Salt Lake: 1. Onset of instability. Water Resour. Res. 1997, 33, 1199–1217. [Google Scholar] [CrossRef]
- Nield, D.A.; Simmons, C.T.; Kuznetsov, A.V.; Ward, J.D. On the evolution of salt lakes: Episodic convection beneath an evaporating salt lake. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Elder, J.W. Transient convection in a porous medium. J. Fluid Mech. 1967, 27, 609–623. [Google Scholar] [CrossRef]
- Simmons, C.T.; Elder, J.W. The Elder Problem. Groundwater 2017, 55, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Elder, J.; Simmons, C.; Diersch, H.-J.; Frolkovič, P.; Holzbecher, E.; Johannsen, K. The Elder Problem. Fluids 2017, 2, 11. [Google Scholar] [CrossRef]
- Voss, C.I.; Souza, W.R. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 1987, 23, 1851–1866. [Google Scholar] [CrossRef]
- Fahs, M.; Younes, A.; Mara, T.A. A new benchmark semi-analytical solution for density-driven flow in porous media. Adv. Water Resour. 2014, 70, 24–35. [Google Scholar] [CrossRef]
- Voss, C.I.; Simmons, C.T.; Robinson, N.I. Three-dimensional benchmark for variable-density flow and transport simulation: Matching semi-analytic stability modes for steady unstable convection in an inclined porous box. Hydrogeol. J. 2010, 18, 5–23. [Google Scholar] [CrossRef]
- Johannsen, K. On the Validity of the Boussinesq Approximation for the Elder Problem. Comput. Geosci. 2003, 7, 169–182. [Google Scholar] [CrossRef]
- Van Reeuwijk, M.; Mathias, S.A.; Simmons, C.T.; Ward, J.D. Insights from a pseudospectral approach to the Elder problem. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Ataie-Ashtiani, B.; Simmons, C.T.; Werner, A.D. Influence of Boundary Condition Types on Unstable Density-Dependent Flow. Groundwater 2014, 52, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Post, V.E.A.; Prommer, H. Multicomponent reactive transport simulation of the Elder problem: Effects of chemical reactions on salt plume development. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Xie, Y.; Simmons, C.T.; Werner, A.D.; Ward, J.D. Effect of transient solute loading on free convection in porous media. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Graf, T.; Boufadel, M.C. Effect of viscosity, capillarity and grid spacing on thermal variable-density flow. J. Hydrol. 2011, 400, 41–57. [Google Scholar] [CrossRef]
- Lu, C.; Shi, L.; Chen, Y.; Xie, Y.; Simmons, C.T. Impact of kinetic mass transfer on free convection in a porous medium. Water Resour. Res. 2016, 52, 3637–3653. [Google Scholar] [CrossRef] [Green Version]
- Fahs, M.; Younes, A.; Makradi, A. A Reference Benchmark Solution for Free Convection in A Square Cavity Filled with A Heterogeneous Porous Medium. Numer. Heat Transf. Part B Fundam. 2015, 67, 437–462. [Google Scholar] [CrossRef]
- Irvine, D.J.; Sheldon, H.A.; Simmons, C.T.; Werner, A.D.; Griffiths, C.M. Investigating the influence of aquifer heterogeneity on the potential for thermal free convection in the Yarragadee Aquifer, Western Australia. Hydrogeol. J. 2015, 23, 161–173. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V.; Simmons, C.T. The Effect of Strong Heterogeneity on the Onset of Convection in a Porous Medium: Non-periodic Global Variation. Transp. Porous Media 2009, 77, 169–186. [Google Scholar] [CrossRef]
- Nield, D.A.; Simmons, C.T. A discussion on the effect of heterogeneity on the onset of convection in a porous medium. Transp. Porous Media 2007, 68, 413–421. [Google Scholar] [CrossRef]
- Prasad, A.; Simmons, C.T. Unstable density-driven flow in heterogeneous porous media: A stochastic study of the Elder [1967b] “short heater” problem. Water Resour. Res. 2003, 39, SBH 4-1–SBH 4-21. [Google Scholar] [CrossRef]
- Graf, T.; Therrien, R. Variable-density groundwater flow and solute transport in irregular 2D fracture networks. Adv. Water Resour. 2007, 30, 455–468. [Google Scholar] [CrossRef]
- Vujević, K.; Graf, T.; Simmons, C.T.; Werner, A.D. Impact of fracture network geometry on free convective flow patterns. Adv. Water Resour. 2014, 71, 65–80. [Google Scholar] [CrossRef]
- Hirthe, E.M.; Graf, T. Fracture network optimization for simulating 2D variable-density flow and transport. Adv. Water Resour. 2015, 83, 364–375. [Google Scholar] [CrossRef]
- Simmons, C.T.; Sharp, J.M.; Nield, D.A. Modes of free convection in fractured low-permeability media. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Graf, T.; Therrien, R. Stable-unstable flow of geothermal fluids in fractured rock. Geofluids 2009, 9, 138–152. [Google Scholar] [CrossRef]
- Vujević, K.; Graf, T. Combined inter- and intra-fracture free convection in fracture networks embedded in a low-permeability matrix. Adv. Water Resour. 2015, 84, 52–63. [Google Scholar] [CrossRef]
- Shao, Q.; Fahs, M.; Hoteit, H.; Carrera, J.; Ackerer, P.; Younes, A. A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media. Water Resour. Res. 2018, 54, 10094–10116. [Google Scholar] [CrossRef]
- Koohbor, B.; Fahs, M.; Ataie-Ashtiani, B.; Belfort, B.; Simmons, C.T.; Younes, A. Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters. J. Hydrol. 2019, 571, 159–177. [Google Scholar] [CrossRef]
- Mozafari, B.; Fahs, M.; Ataie-Ashtiani, B.; Simmons, C.T.; Younes, R. On the use of COMSOL Multiphysics for seawater intrusion in fractured coastal aquifers. E3S Web Conf. 2018, 54, 00020. [Google Scholar] [CrossRef] [Green Version]
- Sharp, J.M., Jr.; Fenstemaker, T.R.; Simmons, C.T.; McKenna, T.E.; Dickinson, J.K. Potential salinity-driven free convection in a shale-rich sedimentary basin: Example from the Gulf of Mexico basin in south Texas. Bulletin 2001, 85, 2089–2110. [Google Scholar]
Parameter | Variable | Value |
---|---|---|
Length | L | 600 (m) |
Height | H | 150 (m) |
Freshwater density | 1000 (kg/m3) | |
Saltwater density at the top boundary | 1200 (kg/m3) | |
Intrinsic permeability of the medium | km | (m2) |
Porosity of the medium | 0.1 [-] | |
Diffusion coefficient | Dm | (m2/s) |
Dynamic viscosity | (kg/(m·s)) | |
Gravitational acceleration | g | 9.8 (m/s2) |
Porosity of the fracture | 0.1 [-] | |
Fracture aperture | 2b | [range of variation] |
Fracture density | 2B | [range of variation] |
Scenario | Fracture Spacing (2B) (m) | Fracture Aperture (2b) (×10−4 m) | Fracture Permeability (kfr) (×10−9 m2) | kfr/km | Bulk Permeability (kb) (×10−13 m2) |
---|---|---|---|---|---|
Simulated scenarios parameters for effect of fracture aperture (Scenario D): | |||||
D1 | 75 | 0.8 | 0.53 | 1100 | 4.85 |
D2 | 75 | 1.6 | 2.13 | 4402 | 4.89 |
D3 | 75 | 2.4 | 4.80 | 9907 | 5 |
D4 | 75 | 3.2 | 8.53 | 17612 | 5.21 |
Simulated scenarios parameters for effect of fracture density: | |||||
A | - | - | - | - | - |
B | 300 | 5 | 20.83 | 42993 | 5.19 |
C | 150 | 3.96 | 13.07 | 26976 | 5.19 |
D | 75 | 3.14 | 8.23 | 16986 | 5.19 |
E | 37.5 | 2.49 | 5.18 | 10691 | 5.19 |
F | 18.75 | 1.98 | 3.27 | 6749 | 5.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafabakhsh, P.; Fahs, M.; Ataie-Ashtiani, B.; Simmons, C.T. Unstable Density-Driven Flow in Fractured Porous Media: The Fractured Elder Problem. Fluids 2019, 4, 168. https://doi.org/10.3390/fluids4030168
Shafabakhsh P, Fahs M, Ataie-Ashtiani B, Simmons CT. Unstable Density-Driven Flow in Fractured Porous Media: The Fractured Elder Problem. Fluids. 2019; 4(3):168. https://doi.org/10.3390/fluids4030168
Chicago/Turabian StyleShafabakhsh, Paiman, Marwan Fahs, Behzad Ataie-Ashtiani, and Craig T. Simmons. 2019. "Unstable Density-Driven Flow in Fractured Porous Media: The Fractured Elder Problem" Fluids 4, no. 3: 168. https://doi.org/10.3390/fluids4030168
APA StyleShafabakhsh, P., Fahs, M., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Unstable Density-Driven Flow in Fractured Porous Media: The Fractured Elder Problem. Fluids, 4(3), 168. https://doi.org/10.3390/fluids4030168