Metachronal Swimming with Rigid Arms near Boundaries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lenz, P.H.; Takagi, D.; Hartline, D.K. Choreographed swimming of copepod nauplii. J. R. Soc. Interface 2015, 12, 20150776. [Google Scholar] [CrossRef] [Green Version]
- Kohlhage, K.; Yager, J. An analysis of swimming in remipede crustaceans. Phil. Trans. R. Soc. 1994, 346, 213–221. [Google Scholar]
- Murphy, D.W.; Webster, D.R.; Kawaguchi, S.; King, R.; Yen, J. Metachronal swimming in Antarctic krill: Gait kinematics and system design. Mar. Biol. 2011, 158, 2541–2554. [Google Scholar] [CrossRef]
- Zhang, C.; Guy, R.D.; Mulloney, B.; Zhang, Q.; Lewis, T.J. Neural mechanism of optimal limb coordination in crustacean swimming. Proc. Natl. Acad. Sci. USA 2014, 111, 13840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnick, R.E. Lift based mechanisms for swimming in eurypterids and portunid crabs. Trans. R. Soc. Edinb 1985, 76, 325–337. [Google Scholar] [CrossRef]
- Davis, W.J. Quantitative analysis of swimmeret beating in the lobster. J. Exp. Biol. 1967, 48, 643–662. [Google Scholar]
- Lim, J.L.; DeMont, M.E. Kinematics, hydrodynamics and force production of pleopods suggest jet-assisted walking in the American lobster (Homarus americanus). J. Exp. Biol. 2009, 212, 2731–2745. [Google Scholar] [CrossRef] [Green Version]
- Knight-Jones, E.W. Relations between metachronism and the direction of ciliary beat in Metazoa. Q. J. Microsc. Sci. 1954, 95, 503–521. [Google Scholar]
- Morgan, E. The swimming of Nymphon gracile (Pycnogonida): The swimming gait. J. Exp. Biol. 1972, 56, 421–432. [Google Scholar]
- Alben, S.; Spears, K.; Garth, S.; Murphy, D.; Yen, J. Coordination of multiple appendages in drag-based swimming. J. R. Soc. Interface 2010, 7, 1545–1557. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.E. Kinematics of swimming in two species of Idotea (Isopoda: Valvifera). J. Exp. Biol. 1988, 138, 37–49. [Google Scholar]
- Takagi, D. Swimming with stiff legs at low Reynolds number. Phys. Rev. E 2015, 92, 023020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, M.P.; Lai, H.K.; Samaee, M.; Santhanakrishnan, A. Hydrodynamics of metachronal paddling: Effects of varying Reynolds number and phase lag. R. Soc. Open Sci. 2019, 6, 191387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3. [Google Scholar] [CrossRef] [Green Version]
- Lighthill, J. Flagellar hydrodynamics. SIAM Rev. 1976, 18, 161–230. [Google Scholar] [CrossRef]
- Brumley, D.R.; Polin, M.; Pedley, T.J.; Goldstein, R.E. Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin. J. R. Soc. Interface 2015, 12, 20141358. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, R.; Takagi, D. Asynchronous oscillations of rigid rods drive viscous fluid to swirl. Phys. Rev. Fluids 2017, 2, 124101. [Google Scholar] [CrossRef]
- Katz, D.F. On the propulsion of micro-organisms near solid boundaries. J. Fluid Mech. 1974, 64, 33–49. [Google Scholar] [CrossRef]
- Felderhof, B.U. Swimming and peristaltic pumping between two plane parallel walls. J. Phys. Condens. Matter 2009, 21, 204106. [Google Scholar] [CrossRef]
- Felderhof, B.U. Swimming at low Reynolds number of a cylindrical body in a circular tube. Phys. Fluids 2010, 22, 113604. [Google Scholar] [CrossRef]
- Liu, B.; Breuer, K.S.; Powers, T.R. Propulsion by a helical flagellum in a capillary tube. Phys. Fluids 2014, 26, 011701. [Google Scholar] [CrossRef] [Green Version]
- Shum, H.; Gaffney, E.A. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E 2015, 92, 063016. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Thiebaud, M.; Hu, W.F.; Farutin, A.; Rafai, S.; Lai, M.C.; Peyla, P.; Misbah, C. Amoeboid motion in confined geometry. Phys. Rev. E 2015, 92, 050701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zhou, C.; Wang, W.; Zhang, H.P. Bimetallic Microswimmers Speed Up in Confining Channels. Phys. Rev. Lett. 2016, 117, 198001. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Yesilyurt, S. Low Reynolds number swimming of helical structures in circular channels. J. Fluids Struct. 2017, 74, 234–246. [Google Scholar] [CrossRef]
- Ainley, J.; Durkin, S.; Embid, R.; Boindala, P.; Cortez, R. The method of images for regularized Stokeslets. J. Comp. Phys. 2008, 227, 4600–4616. [Google Scholar] [CrossRef]
Case | Description | (rad) | (deg) | (deg) |
---|---|---|---|---|
1 | No phase difference | 0 | 90 | 90 |
2 | Phase difference, distinct mid-angles | 110 | 70 | |
3 | Phase difference, same mid-angles | 90 | 90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, R.; Takagi, D. Metachronal Swimming with Rigid Arms near Boundaries. Fluids 2020, 5, 24. https://doi.org/10.3390/fluids5010024
Hayashi R, Takagi D. Metachronal Swimming with Rigid Arms near Boundaries. Fluids. 2020; 5(1):24. https://doi.org/10.3390/fluids5010024
Chicago/Turabian StyleHayashi, Rintaro, and Daisuke Takagi. 2020. "Metachronal Swimming with Rigid Arms near Boundaries" Fluids 5, no. 1: 24. https://doi.org/10.3390/fluids5010024
APA StyleHayashi, R., & Takagi, D. (2020). Metachronal Swimming with Rigid Arms near Boundaries. Fluids, 5(1), 24. https://doi.org/10.3390/fluids5010024