Derivation of the Adjoint Drift Flux Equations for Multiphase Flow
Abstract
:1. Introduction
- is the dispersed-phase volume fraction,
- is the continuum density,
- is the dispersed-phase density,
- is the mixture density, defined as ,
- is the mixture velocity,
- is the mixture kinematic pressure,
- is the mixture viscosity, defined as the sum of the continuum, dispersed-phase and mixture turbulent viscosities, ,
- is the mixture strain rate tensor,
- is the dispersed-phase settling velocity,
- is the acceleration due to gravity,
- F is the capillary force and
- K is the turbulent diffusion coefficient, defined as the mixture eddy diffusivity, .
2. The Optimization Problem
Derivation of the Adjoint Drift Flux Equations
3. Application to Wall Bounded Flows
3.1. Adjoint Boundary Conditions at the Inlet
3.2. Adjoint Boundary Conditions at the Wall
3.3. Adjoint Boundary Conditions at the Outlet
4. Objective Function
5. Settling Velocity
5.1. Dahl Model
5.2. Takacs Model
- a is the hindered settling parameter,
- is the flocculent settling parameter,
- is the volume fraction of non-settleable solids at the inlet and
- is the maximum practical settling velocity,
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Derivation of Equation (10a)
Appendix B. Derivation of Equation (10g)
Appendix C. Derivation of Equation (10i)
Appendix D. Derivation of Equation (13)
Appendix E. Derivation of Equation (36c)
References
- Soto, O.; Löhner, R.; Yang, C. An adjoint-based design methodology for CFD problems. Int. J. Num. Meth. Heat Fluid Flow 2004, 14, 734–759. [Google Scholar] [CrossRef]
- Giles, M.; Pierce, N. An introduction to the adjoint approach to design. Flow Turb. Combust. 2000, 65, 393–415. [Google Scholar] [CrossRef]
- Othmer, C. Adjoint methods for car aerodynamics. J. Math. Ind. 2014, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Karpouzas, G.K.; Papoutsis-Kiachagias, E.M.; Schumacher, T.; de Villiers, E.; Giannakouglou, K.C.; Othmer, C. Adjoint Optimisation for Vehicle External Aerodynamics. Int. J. Automot. Eng. 2016, 7, 1–7. [Google Scholar]
- Papoutsis-Kiachagias, E.M.; Asouti, V.G.; Giannakoglou, K.C.; Gkagkas, K.; Shimokawa, S.; Itakura, E. Multi-Point Aerodynamic Shape Optimization of Cars Based on Continuous Adjoint. Struct. Multidiscip. Optim. 2019, 59, 675–694. [Google Scholar] [CrossRef]
- Reuther, J.; Jameson, A.; Farmer, J.; Martinelli, L.; Saunders, D. Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation; Paper 94; AIAA: Reston, VA, USA, 1996. [Google Scholar]
- Kroll, N.; Gauger, N.; Brezillon, J.; Dwight, R.; Fazzolari, A.; Vollmer, D.; Becker, K.; Barnewitz, H.; Schulz, V.; Hazra, S. Flow simulation and shape optimization for aircraft design. J. Comput. Appl. Math. 2007, 203, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Campobasso, M.; Duta, M.; Giles, M. Adjoint calculation of sensitivities of turbomachinery objective functions. J. Propul. Power 2003, 19, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.X.; He, L. Adjoint aerodynamic design optimization for blades in multistage turbomachines; part I: Methodology and verification. J. Turbomach. 2010, 132, 021011. [Google Scholar] [CrossRef]
- Wang, D.; He, L.; Li, Y.; Wells, R. Adjoint aerodynamic design optimization for blades in multistage turbomachines–part II: Validation and application. J. Turbomach. 2010, 132, 021012. [Google Scholar] [CrossRef]
- Shape Optimization for Aerodynamic Efficiency using Adjoint Methods; ANSYS White Paper; ANSYS: Canonsburg, PA, USA, 2016.
- Alexias, P.; Giannakoglou, K.C. Shape Optimisation of a Two-Fluid Mixing Device using Continuous Adjoint. Fluids 2020, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.J.; Andres, E.; Lozano, C.; Valero, E. Volumetric B-splines shape parametrization for aerodynamic shape design. Aerosp. Sci. Technol. 2014, 37, 26–36. [Google Scholar] [CrossRef]
- Jakobsson, S.; Amoignon, O. Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimisation. Comput. Fluids 2007, 36, 1119–1136. [Google Scholar] [CrossRef]
- Kapellos, C.; Alexias, P.; De Villiers, E. The adjoint mehod for automotive optimisation using a sphericity based morpher. In Proceedings of the International Association for the Engineering Modelling, Analysis and Simulation Adjoint CFD Seminar (NAFEMS Adjoint CFD Seminar), Wiesbaden, Germany, 23–24 October 2016. [Google Scholar]
- Drew, D.A. Mathematical Modeling of Two-Phase Flow. Ann. Rev. Fluid Mech. 1983, 15, 261–291. [Google Scholar] [CrossRef]
- Balachandar, S.; Eaton, J. Turbulent Dispersed Multiphase Flow. Ann. Rev. Fluid Mech. 2010, 42, 111–133. [Google Scholar] [CrossRef]
- Brennan, D. The Numerical Simulation of Two-Phase Flows in Settling Tanks. Ph.D. Thesis, Imperial College London, London, UK, 2001. [Google Scholar]
- Othmer, C. A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int. J. Numer. Methods Fluids 2008, 58, 861–877. [Google Scholar] [CrossRef]
- Kavvadias, I.S.; Papoutsis-Kiachagias, E.M.; Dimitrakopoulos, G.; Giannakoglou, K.C. The continuous adjoint approach to the k-ω SST turbulence model with applications in shape optimisation. Eng. Optim. 2015, 47, 1523–1542. [Google Scholar] [CrossRef]
- Schramm, M.; Stoevesandt, B.; Peinke, J. Optimisation of Airfoils using the Adjoint Approach and the Influence of Adjoint Turbulent Viscosity. Computation 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Ubbink, O. Numerical prediction of two fluid systems with sharp interfaces. Ph.D. Thesis, Imperial College London, London, UK, 1997. [Google Scholar]
- Dahl, C. Numerical Modelling of Flow and Settling in Secondary Settling Tanks. Ph.D Thesis, Aalborg University, Aalborg, Denmark, 1993. [Google Scholar]
- Takacs, I.; Patry, G.G.; Nolasco, D. A dynamic model of the clarification-thickening process. Water Res. 1991, 25, 1263–1271. [Google Scholar] [CrossRef]
- Clarke, D.A. A Primer on Tensor Calculus. Department of Physics, Saint Mary’s University: Halifax, NS, Canada, Unpublished manuscript. 2011. [Google Scholar]
Inlet | fixed value | fixed value | zero gradient |
Wall | zero | zero gradient | zero gradient |
Outlet | zero gradient | zero gradient | zero |
u | q | |||
---|---|---|---|---|
Inlet | zero | Equation (24b) | zero | zero gradient |
Wall | zero | Equation (29b) | Equation (29c) | zero gradient |
Outlet | Equation (33a) | Equation (33b) | Equation (33c) | Equation (33d) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossberg, S.; Jarman, D.S.; Tabor, G.R. Derivation of the Adjoint Drift Flux Equations for Multiphase Flow. Fluids 2020, 5, 31. https://doi.org/10.3390/fluids5010031
Grossberg S, Jarman DS, Tabor GR. Derivation of the Adjoint Drift Flux Equations for Multiphase Flow. Fluids. 2020; 5(1):31. https://doi.org/10.3390/fluids5010031
Chicago/Turabian StyleGrossberg, Shenan, Daniel S. Jarman, and Gavin R. Tabor. 2020. "Derivation of the Adjoint Drift Flux Equations for Multiphase Flow" Fluids 5, no. 1: 31. https://doi.org/10.3390/fluids5010031
APA StyleGrossberg, S., Jarman, D. S., & Tabor, G. R. (2020). Derivation of the Adjoint Drift Flux Equations for Multiphase Flow. Fluids, 5(1), 31. https://doi.org/10.3390/fluids5010031