Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour
Abstract
:1. Introduction
2. Material and Methodology
2.1. Materials
2.2. Methodology
2.2.1. Micro-doughLab
2.2.2. Consistograph
2.2.3. Alveograph
2.2.4. Small Amplitude Oscillatory Shear Measurements
2.2.5. Texture
Texture Profile Analysis
SMS/Kieffer Dough and Gluten Extensibility Rig
Puncture Test
2.2.6. Volume
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Empirical Rheology of Dough
3.2. Fundamental Rheology of Dough
3.3. Breadmaking Properties
3.4. Correlations between Parameters Obtained from Empirical and Fundamental Rheology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prazeres, A.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef] [PubMed]
- Lappa, I.K.; Papadaki, A.; Kachrimanidou, V.; Terpou, A.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods 2019, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madureira, A.; Pereira, C.; Gomes, A.; Pintado, M.; Malcata, F. Bovine whey proteins – overview on their main biological properties. Food Res. Int. 2007, 40, 1197–1210. [Google Scholar] [CrossRef]
- Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 2009, 1, 177–187. [Google Scholar] [CrossRef]
- Kinsella, J.E.; Whitehead, D.M. Proteins in whey: Chemical, physical, and functional properties. Adv. Food Nutr. Res. 1989, 33, 343–438. [Google Scholar]
- Fang, T.; Guo, M. Physicochemical, texture properties, and microstructure of yogurt using polymerized whey protein directly prepared from cheese whey as a thickening agent. J. Dairy Sci. 2019, 102, 7884–7894. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Ariyanti, D.; Aini, A.P.; Pinundi, D.S. Optimization of ethanol production from whey through fed-batch fermentation using Kluyveromyces marxianus. Energy Procedia 2014, 47, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Murari, C.S.; Machado, W.R.C.; Schuina, G.L.; Del Bianchi, V.L. Optimization of bioethanol production from cheese whey using Kluyveromyces marxianus URM 7404. Biocatal. Agric. Biotechnol. 2019, 20, 101182. [Google Scholar] [CrossRef]
- Gélinas, P.; Audet, J.; Lachange, O.; Vachon, M. Fermented dairy ingredients for bread: Effects on dough rheology and bread characteristics. Cereal Chem. 1995, 72, 151–154. [Google Scholar]
- Erdogdu-Arnoczky, N.; Czuchajowska, Z.; Pomeranz, Y. Functionality of whey and casein in fermentation and breadbaking by fixed and optimized procedures. Cereal Chem. 1996, 73, 309–316. [Google Scholar]
- Kenny, S.; Wehrle, K.; Arendt, C.S.E.K. Incorporation of dairy ingredients into wheat bread: Effects on dough rheology and bread quality. Eur. Food Res. Technol. 2000, 210, 391–396. [Google Scholar] [CrossRef]
- Bilgin, B.; Daglioglu, O.; Konyali, M. Functionality of bread made with pasteurized whey and/or buttermilk. Ital. J. Sci. 2006, 3, 277–286. [Google Scholar]
- Indrani, D.; Prabhasankar, P.; Rajiv, J.; Rao, G.V. Influence of whey protein concentrate on the rheological characteristics of dough, microstructure and quality of unleavened flat bread (parotta). Food Res. Int. 2007, 40, 1254–1260. [Google Scholar] [CrossRef]
- Asghar, A.; Anjum, F.M.; Allen, J.C.; Daubert, C.R.; Rasool, G. Effect of modified whey protein concentrates on empirical and fundamental dynamic mechanical properties of frozen dough. Food Hydrocoll. 2009, 23, 1687–1692. [Google Scholar] [CrossRef]
- Madenci, A.B.; Bilgiçli, N. Effect of whey protein concentrate and buttermilk powders on rheological properties of dough and bread quality. J. Food Qual. 2014, 37, 117–124. [Google Scholar] [CrossRef]
- Wronkowska, M.; Jadacka, M.; Soral-Smietana, M.; Zander, L.; Dajnowiec, F.; Banaszczyk, P.; Jelinski, T.; Szmatowicz, B. Acid whey concentrated by ultrafiltration a tool for modeling bread properties. LWT Food Sci. Technol. 2015, 61, 172–176. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Tang, X. Effects of whey and soy protein addition on bread rheological property of wheat flour. J. Texture Stud. 2018, 49, 38–46. [Google Scholar] [CrossRef] [PubMed]
- van Riemsdijk, L.E.; van der Goot, A.J.; Hamer, R.J.; Boom, R.M. Preparation of gluten-free bread using meso-structured whey protein particle system. J. Cereal Sci. 2011, 53, 355–361. [Google Scholar] [CrossRef]
- Kittisuban, P.; Ritthiruangdej, P.; Suphantharika, M. Optimization of hydroxypropylmethylcellulose, yeast b-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT Food Sci. Technol. 2014, 57, 738–748. [Google Scholar] [CrossRef]
- Sahagún, M.; Gómez, M. Assessing influence of protein source on characteristics of gluten-free breads optimising their hydration level. Food Bioprocess Technol. 2018, 11, 1686–1694. [Google Scholar] [CrossRef]
- Pico, J.; Reguilón, M.P.; Bernal, J.; Gómez, M. Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn starch based gluten-free breads. J. Cereal Sci. 2019, 86, 92–101. [Google Scholar] [CrossRef]
- Tomić, J.; Torbica, A.; Belović, M. Effect of non-gluten proteins and transglutaminase on dough rheological properties and quality of bread based on millet (Panicum miliaceum) flour. LWT Food Sci. Technol. 2020, 118, 108852. [Google Scholar] [CrossRef]
- Graça, C.; Fradinho, P.; Sousa, I.; Raymundo, A. Impact of Clorella vulgaris addition on rheology wheat dough properties. LWT Food Sci. Technol. 2018, 89, 466–474. [Google Scholar] [CrossRef]
- Nunes, M.C.; Graça, C.; Vlaisavljevic, S.; Tenreiro, A.; Sousa, I.; Raymundo, A. Microalgae cell disruption: Effect on the bioactivity and rheology of wheat bread. Algal Res. 2020, 45, 101749. [Google Scholar] [CrossRef]
- Dobraszczyk, B.J.; Morgenstern, M.P. Rheology and the breadmaking process. J. Cereal Sci. 2003, 38, 229–245. [Google Scholar] [CrossRef]
- Song, Y.; Zeng, Q. Dynamic rheological properties of wheat flour dough and proteins. Trends Food Sci. Technol. 2007, 18, 132–138. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N. Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocoll. 2013, 33, 342–348. [Google Scholar] [CrossRef]
- Buresová, I.; Krácmar, S.; Dvoráková, P.; Streda, T. The relationship between rheological characteristics of gluten-free dough and the quality of biologically leavened bread. J. Cereal Sci. 2014, 60, 271–275. [Google Scholar] [CrossRef]
- Al-Attabi, Z.H.; Merghani, T.M.; Ali, A.; Rahman, M.S. Effect of barley flour addition on the physico-chemical properties of dough and structure of bread. J. Cereal Sci. 2017, 75, 61–68. [Google Scholar] [CrossRef]
- McCann, T.H.; Day, L. Effect of sodium chloride on gluten network formation, dough microstructure and rheology in relation to breadmaking. J. Cereal Sci. 2013, 57, 444–452. [Google Scholar] [CrossRef]
- Matos, M.E.; Rosell, C.M. Quality indicators of rice-based gluten-free bread-like products: Relationships between dough rheology and quality characteristics. Food Bioprocess Technol. 2013, 6, 2331–2341. [Google Scholar] [CrossRef] [Green Version]
- Janssen, A.M.; van Vliet, T.; Vereijken, J.M. Fundamental and empirical rheological behaviour of wheat flour doughs and comparison with bread making performance. J. Cereal Sci. 1996, 23, 43–54. [Google Scholar] [CrossRef]
- Kieffer, R.; Wieser, H.; Henderson, M.H.; Graveland, A. Correlations of the breadmaking performance of wheat flour with rheological measurements on a micro-scale. J. Cereal Sci. 1998, 27, 53–60. [Google Scholar] [CrossRef]
Ingredients (g/100 g) | Doughs | |||
---|---|---|---|---|
Control (C) | 12% Whey (12D) | 16% Whey (16D) | 20% Whey (20D) | |
Wheat flour | 100.0 | 88.0 | 84.0 | 80.0 |
Whey powder | 0.0 | 12.0 | 16.0 | 20.0 |
Water Absorption (14% moisture basis) | 52.2 | 39.4 | 38.2 | 36.4 |
Micro-dougLab | WA (%) | P (mN.m) | DDT (s) | DS (s) | DSO (mN.m) | PE (Wh/kg) |
C | 52.2 | 130 ± 1.5 | 234 ± 0.3 a | 258 ± 0.3 a | 18.3 ± 0.6 a | 15.0 ± 1.4 a |
12D | 39.4 | 128 ± 2.5 | 222 ± 2.3 a | 558 ± 0.2 b | 3.3 ± 1.5 b | 15.5 ± 11.0 a |
16D | 38.2 | 133 ± 0.6 | 54 ± 0.1 b | 552 ± 0.3 b | 5.3 ± 1.1 b | 2.9 ± 0.3 b |
20D | 36.4 | 133 ± 2.3 | 54 ± 0.1 b | 522 ± 0.7 b | 6.7± 1.5 b | 3.0 ± 0.1 b |
Consistograph | WA (%) | Prmax (mbar) | tPrmax (s) | Tol (s) | D250 (mbar) | D450 (mbar) |
C | 50.4 | 2204 ± 75 | 121 ± 4 a | 129 ± 1 a | 1403 ± 69 a | 1262 ± 232 a |
12D | 39.6 | 2298 ± 2 | 171 ± 16 b | 246 ± 20 b | 2132 ± 87 b | 1538 ± 61 a,b |
16D | 38.0 | 2203 ± 51 | 251 ± 20 c | 307 ± 73 b | 2194 ± 46 b | 1755 ± 106 b |
20D | 36.2 | 2235 ± 64 | 235 ± 11 c | 261 ± 19 b | 2223 ± 72 b | 1686 ± 94 b |
Alveograph | WA (%) | P (mm H2O) | L (mm) | P/L | W (10-4 J) | - |
C | 50.4 | 66.0 ± 1.2 a | 78.4 ± 1.6 a,b | 0.8 ± 0.1 a | 158.7 ± 9.5 a | - |
12D | 39.6 | 92.7 ± 3.0 b | 85.5 ± 1.1 a | 1.1 ± 0.1 a | 239.2 ± 12.5 b | - |
16D | 38.0 | 109.7 ± 13.7 | 71.6 ± 2.6 b,c | 1.5 ± 0.4 b | 258.3 ± 10.3 b | - |
20D | 36.2 | 109.8 ± 6.4 | 60.8 ± 2.5 c | 1.8 ± 0.5 b | 232.8 ± 13.7 b | - |
Texturometer | WA (%) | Rmax t0 (N) | Emax t0 (mm) | Firmness (N) | Adhesiveness (N.s) | Cohesiveness |
C | 52.2 | 0.26 ± 0.029 a | 13.93 ± 0.83 a | 0.72 ± 0.30 a | 6.89 ± 0.93 a | 0.78 ± 0.16 a |
12D | 39.4 | 0.36 ± 0.054 b | 13.83 ± 1.12 a | 1.01 ± 0.13 a | 8.63 ± 0.40 a | 0.87 ± 0.10 a |
16D | 38.2 | 0.41 ± 0.029 b,c | 16.38 ± 0.37 b | 0.83 ± 0.09 a | 8.63 ± 0.73 a | 0.81 ± 0.04 a |
20D | 36.4 | 0.48 ± 0.037 | 15.16 ± 0.57 a,b | 0.68 ± 0.07 a | 5.59 ± 2.56 a | 0.60 ± 0.14 a |
Sample | Firmness (N) | Volume (cm3) | |
---|---|---|---|
t0 | t48 h | ||
C | 2.55 ± 0.39 a | 4.68 ± 1.19 a | 1272 ± 8 a |
12D | 4.51 ± 0.33 b | 7.66 ± 1.93 b | 1045 ± 9 b |
16D | 5.91 ± 0.34 c | 6.89 ± 1.03 a,b | 1152 ± 8 c |
20D | 4.14 ± 0.48 b | 6.35 ± 0.78 a,b | 958 ± 8 d |
Instrument | Micro-doughLab | Consistograph | Alveograph | Texturometer (Extensibility) |
---|---|---|---|---|
Micro-doughLab | - | DDT = 455 − 1.599 tPrmax (r2 = 0.71) DS = 127 + 1.461 Tol (r2 = 0.69) DS = −230 + 0.353 D250 (r2 = 0.87) DS = −244 + 0.459 D450 (r2 = 0.87) DSO = 24 − 0.067 Tol (r2 = 0.66) DSO = 40 − 0.016 D250 (r2 = 0.61) PE = 31 − 0.110 tPrmax (r2 = 0.65) | DS = −42 + 5.418 P (r2 = 0.71) DS = −63 + 2.377 W (r2 = 0.76) DSO = 31 − 0.237 P (r2 = 0.61) DSO = 33 − 0.108 W (r2 = 0.70) | Not significant (r2 < 0.60) |
Consistograph | - | - | tPrmax = −34 + 2.405 P (r2 = 0.79) D250 = 523 + 15.424 P (r2 = 0.77) D250 = 567 + 6.320 W (r2 = 0.72) D450 = 726 + 8.786 P (r2 = 0.65) | tPrmax = 8 + 494 Rmaxt0 (r2 = 0.65) D250 = 804 + 3137 Rmaxt0 (r2 = 0.62) D250 = 576 + 56 Rmaxt0 (r2 = 0.63) |
Alveograph | - | - | - | P = 26 + 184 Rmaxt0 (r2 = 0.65) |
Texturometer (Extensibility) | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedo, C.; Nunes, M.C.; Sousa, I.; Raymundo, A. Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour. Fluids 2020, 5, 50. https://doi.org/10.3390/fluids5020050
Macedo C, Nunes MC, Sousa I, Raymundo A. Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour. Fluids. 2020; 5(2):50. https://doi.org/10.3390/fluids5020050
Chicago/Turabian StyleMacedo, Christine, Maria Cristiana Nunes, Isabel Sousa, and Anabela Raymundo. 2020. "Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour" Fluids 5, no. 2: 50. https://doi.org/10.3390/fluids5020050
APA StyleMacedo, C., Nunes, M. C., Sousa, I., & Raymundo, A. (2020). Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour. Fluids, 5(2), 50. https://doi.org/10.3390/fluids5020050