Numerical Simulations of Flow around Copepods: Challenges and Future Directions
Abstract
:1. Introduction
2. Overview of Numerical Methods for Simulations of Copepods
2.1. Force-Field Simulations
2.2. Appendage-Scale Simulations
3. Results from Previous Simulations of Copepods
4. Discussions and Future Directions
Supplementary Materials
Funding
Conflicts of Interest
References
- Boxshall, G.A.; Halsey, S.H. An Introduction to Copepod Diversity; Ray Society: Andover, UK, 2004. [Google Scholar]
- Friedman, M.M.; Strickler, J.R. Chemoreceptors and Feeding in Calanoid Copepods (Arthropoda: Crustacea). Proc. Natl. Acad. Sci. USA 1975, 72, 4185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickler, J.R.; Bal, A.K. Setae of the First Antennae of the Copepod Cyclops scutifer (Sars): Their Structure and Importance. Proc. Natl. Acad. Sci. USA 1973, 70, 2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borazjani, I.; Sotiropoulos, F.; Malkiel, E.; Katz, J. On the role of copepod antenna in the production of hydrodynamic force during hopping. J. Exp. Biol. 2010, 213, 3019–3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejstgaard, J.C.; Frischer, M.E.; Simonelli, P.; Troedsson, C.; Brakel, M.; Adiyaman, F.; Sazhin, A.F.; Artigas, L.F. Quantitative PCR to estimate copepod feeding. Mar. Biol. 2008, 153, 565–577. [Google Scholar] [CrossRef]
- Koehl, M.A.R.; Strickler, J.R. Copepod Feeding Currents: Food Capture at Low Reynolds Number. Limnol. Oceanogr. 1981, 26, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Svetlichny, L.S.; Hubareva, E.S. The energetics of Calanus euxinus: Locomotion, filtration of food and specific dynamic action. J. Plankton Res. 2005, 27, 671. [Google Scholar] [CrossRef] [Green Version]
- van Duren, L.A.; Stamhuis, E.J.; Videler, J.J. Copepod feeding currents: Flow patterns, filtration rates and energetics. J. Exp. Biol. 2003, 206, 255. [Google Scholar] [CrossRef] [Green Version]
- Trager, G.; Achituv, Y.; Genin, A. Effects of prey escape ability, flow speed, and predator feeding mode on zooplankton capture by barnacles. Mar. Biol. 1994, 120, 251. [Google Scholar] [CrossRef]
- Strickler, J.R. Swimming of planktonic Cyclops species (Copepoda, Crustacea): Pattern, movements and their control. In Swimming and Flying in Nature; Springer: Boston, MA, USA, 1975; Volume 2. [Google Scholar]
- Alcaraz, M.; Strickler, J.R. Locomotion in copepods: Pattern of movements and energetics of Cyclops. Hydrobiologia 1988, 167–168, 409. [Google Scholar] [CrossRef]
- Lenz, P.H.; Hower, A.E.; Hartline, D.K. Force production during pereiopod power strokes in Calanus finmarchicus. J. Mar. Syst. 2004, 49, 133–144. [Google Scholar] [CrossRef]
- Buskey, E.J.; Lenz, P.H.; Hartline, D.K. Escape behavior of planktonic copepods in response to hydrodynamic disturbances: High speed video analysis. Mar. Ecol. Prog. Ser. 2002, 235, 135–146. [Google Scholar] [CrossRef] [Green Version]
- van Duren, L.A.; Videler, J.J. Escape from viscosity: The kinematics and hydrodynamics of copepod foraging and escape swimming. J. Exp. Biol. 2003, 206, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, H.; Squires, K.D. Comparison of oceanic turbulence and copepod swimming. Mar. Ecol. Prog. Ser. 1996, 144, 299–301. [Google Scholar] [CrossRef] [Green Version]
- Webster, D.; Young, D.; Yen, J. Copepods’ response to Burgers’ vortex: Deconstructing interactions of copepods with turbulence. Integr. Compar. Biol. 2015, 55, 706–718. [Google Scholar] [CrossRef] [Green Version]
- Lenz, P.H.; Hartline, D.K. Reaction times and force production during escape behavior of a calanoid copepod, Undinula vulgaris. Mar. Biol. 1999, 133, 249. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.; Lenz, P.H.; Gassie, D.V.; Hartline, D.K. Mechanoreception in marine copepods: Electrophysiological studies on the first antennae. J. Plankton Res. 1992, 14, 495. [Google Scholar] [CrossRef]
- Yen, J.; Strickler, J.R. Advertisement and Concealment in the Plankton: What Makes a Copepod Hydrodynamically Conspicuous? Invertebr. Biol. 1996, 115, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Catton, K.B.; Yen, J.; Webster, D.R.; Brown, J. Quantitative analysis of tethered and free-swimming copepodid flow fields. J. Exp. Biol. 2007, 210, 299–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malkiel, E.; Sheng, J.; Katz, J.; Strickler, J.R. The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J. Exp. Biol. 2003, 206, 3657–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamhuis, E.; Videler, J. Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. J. Exp. Biol. 1995, 198, 283–294. [Google Scholar] [PubMed]
- Murphy, D.; Webster, D.; Yen, J. A high-speed tomographic PIV system for measuring zooplanktonic flow. Limnol. Oceanogr. Methods 2012, 10, 1096–1112. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Osborn, T.R. Hydrodynamics of Copepods: A Review. Surv. Geophys. 2004, 25, 339. [Google Scholar] [CrossRef]
- Jiang, H. Numerical simulation of the flow field at the scale size of an individual copepod. In Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation; CRC Press: Boca Raton, FL, USA, 2004; pp. 333–359. [Google Scholar]
- Jiang, H.; Osborn, T.R.; Meneveau, C. The flow field around a freely swimming copepod in steady motion. Part I: Theoretical analysis. J. Plankton Res. 2002, 24, 167. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, A.; Liu, X.; Tong, Z.; Zhang, H. DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technol. 2016, 302, 108–152. [Google Scholar] [CrossRef]
- Koch, D.L.; Subramanian, G. Collective hydrodynamics of swimming microorganisms: Living fluids. Annu. Rev. Fluid Mech. 2011, 43, 637–659. [Google Scholar] [CrossRef]
- Jiang, H.; Kiørboe, T. The fluid dynamics of swimming by jumping in copepods. J. R. Soc. Interface 2011, 8, 1090–1103. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Kiørboe, T. Propulsion efficiency and imposed flow fields of a copepod jump. J. Exp. Biol. 2011, 214, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Osborn, T.R.; Squires, K.D. Direct numerical simulation of planktonic contact in turbulent flow. J. Plankton Res. 1991, 13, 629–643. [Google Scholar] [CrossRef]
- Squires, K.D.; Yamazaki, H. Preferential concentration of marine particles in isotropic turbulence. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 1989–2004. [Google Scholar] [CrossRef]
- Lewis, D.; Pedley, T. Planktonic contact rates in homogeneous isotropic turbulence: Theoretical predictions and kinematic simulations. J. Theor. Biol. 2000, 205, 377–408. [Google Scholar] [CrossRef]
- Ardeshiri, H.; Benkeddad, I.; Schmitt, F.G.; Souissi, S.; Toschi, F.; Calzavarini, E. Lagrangian model of copepod dynamics: Clustering by escape jumps in turbulence. Phys. Rev. E 2016, 93, 043117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elghobashi, S.; Truesdell, G. On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A Fluid Dyn. 1993, 5, 1790–1801. [Google Scholar] [CrossRef]
- Truesdell, G.; Elghobashi, S. On the two-way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion. Phys. Fluids 1994, 6, 1405–1407. [Google Scholar] [CrossRef]
- Borazjani, I.; Akbarzadeh, A. Large Eddy Simulations of Flows with Moving Boundaries. In Modeling and Simulation of Turbulent Mixing and Reaction; Springer: Singapore, 2020; pp. 201–225. [Google Scholar]
- Donea, J.; Huerta, A.; Ponthot, J.P.; Rodríguez-Ferran, A. Arbitrary Lagrangian–Eulerian Methods. In Encyclopedia of Computational Mechanics; American Cancer Society: Atlanta, GA, USA, 2004; Chapter 14. [Google Scholar] [CrossRef]
- Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [Google Scholar] [CrossRef] [Green Version]
- Tucker, P.; Pan, Z. A Cartesian cut cell method for incompressible viscous flow. Appl. Math. Model. 2000, 24, 591–606. [Google Scholar] [CrossRef]
- Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 1999, 25, 755–794. [Google Scholar] [CrossRef]
- Peskin, C. Numerical Analysis of Blood Flow in the Heart. J. Comput. Phys. 1977, 25, 220. [Google Scholar] [CrossRef]
- Peskin, C.; McQueen, D. A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 1989, 81, 372–405. [Google Scholar] [CrossRef]
- Peskin, C.S. Flow Patterns Around Heart Valves: A Numerical Method. J. Comput. Phys. 1972, 10, 252–271. [Google Scholar] [CrossRef]
- Gilmanov, A.; Sotiropoulos, F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 2005, 207, 457. [Google Scholar] [CrossRef]
- Borazjani, I.; Ge, L.; Sotiropoulos, F. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 2008, 227, 7587–7620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.; Sotiropoulos, F. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 2007, 225, 1782–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balay, S.; Buschelman, K.; Gropp, W.D.; Kaushik, D.; Knepley, M.G.; McInnes, L.C.; Smith, B.F.; Zhang, H. PETSc Web Page 2001. Available online: http://www.mcs.anl.gov/petsc (accessed on 16 April 2020).
- Borazjani, I. Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 2013, 257, 103–116. [Google Scholar] [CrossRef]
- Borazjani, I.; Ge, L.; Le, T.; Sotiropoulos, F. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Comput. Fluids 2013, 77, 76–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgharzadeh, H.; Borazjani, I. A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries. J. Comput. Phys. 2017, 331, 227–256. [Google Scholar] [CrossRef] [Green Version]
- Behara, S.; Borazjani, I.; Sotiropoulos, F. Vortex-induced vibrations of an elastically mounted sphere with three degrees of freedom at Re=300: Hysteresis and vortex shedding modes. J. Fluid Mech. 2011, 686, 426–450. [Google Scholar] [CrossRef]
- Borazjani, I.; Sotiropoulos, F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. J. Fluid Mech. 2009, 621, 321. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I. The functional role of caudal and anal/dorsal fins during the C-start of a bluegill sunfish. J. Exp. Biol. 2013, 216, 1658–1669. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I.; Daghooghi, M. The fish tail motion forms an attached leading edge vortex. Proc. R. Soc. B 2013, 280, 20122071. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I.; Sotiropoulos, F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 2008, 211, 1541–1558. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I.; Sotiropoulos, F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 2009, 212, 576–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borazjani, I.; Sotiropoulos, F. Why don’t mackerels swim like eels? The role of form and kinematics on the hydrodynamics of undulatory swimming. Phys. Fluids 2009, 21, 091109. [Google Scholar] [CrossRef]
- Borazjani, I.; Sotiropoulos, F. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Exp. Biol. 2010, 213, 89–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borazjani, I.; Sotiropoulos, F.; Tytell, E.D.; Lauder, G.V. Hydrodynamics of the bluegill sunfish c-start escape response: Three-dimensional simulations and comparison with experimental data. J. Exp. Biol. 2012, 215, 671–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daghooghi, M.; Borazjani, I. The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspir. Biomim. 2015, 10, 056018. [Google Scholar] [CrossRef]
- Daghooghi, M.; Borazjani, I. Self-propelled swimming simulations of bio-inspired smart structures. Bioinspir. Biomim. 2016, 11, 056001. [Google Scholar] [CrossRef]
- Tytell, E.D.; Borazjani, I.; Sotiropoulos, F.; Baker, T.V.; Anderson, E.J.; Lauder, G.V. Disentangling the functional roles of morphology and motion in the swimming of fish. Integr. Compar. Biol. 2010, 50, 1140–1154. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I.; Ge, L.; Sotiropoulos, F. High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta. Ann. Biomed. Eng. 2010, 38, 326–344. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I.; Sotiropoulos, F. The effect of implantation orientation of a bi-leaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. ASME J. Biomech. Eng. 2010, 132, 111005–111008. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I.; Westerdale, J.; McMahon, E.; Rajaraman, P.K.; Heys, J.; Belohlavek, M. Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound. Comput. Math. Methods Med. Special Issue Comput. Anal. Coronary Ventric. Hemodyn. 2013, 2013, 395081-11. [Google Scholar] [CrossRef] [Green Version]
- Le, T.B.; Borazjani, I.; Sotiropoulos, F. Pulsatile Flow Effects on the Hemodynamics of Intracranial Aneurysms. J. Biomech. Eng. 2010, 132, 111009. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Borazjani, I. The role of shape and heart rate on the performance of the left ventricle. J. Biomech. Eng. 2015, 137, 114501. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, M.; Borazjani, I. Comparison of platelet activation through hinge vs bulk flow in bileaflet mechanical heart valves. J. Biomech. 2019, 83, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, M.; Asgharzadeh, H.; Borazjani, I. Platelet activation of mechanical versus bioprosthetic heart valves during systole. J. Biomech. 2017, 56, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Khosronejad, A.; Kang, S.; Borazjani, I.; Sotiropoulos, F. Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv. Water Resour. 2011, 34, 829–843. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Borazjani, I. A numerical study on controlling flow separation via surface morphing in the form of backward traveling waves. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Akbarzadeh, A.M.; Borazjani, I. Reducing flow separation of an inclined plate via travelling waves. J. Fluid Mech. 2019, 880, 831–863. [Google Scholar] [CrossRef]
- Akbarzadeh, A.M.; Borazjani, I. Large eddy simulations of a turbulent channel flow with a deforming wall undergoing high steepness traveling waves. Phys. Fluids 2019, 31, 125107. [Google Scholar] [CrossRef]
- Asadi, H.; Asgharzadeh, H.; Borazjani, I. On the scaling of propagation of periodically generated vortex rings. J. Fluid Mech. 2018, 853, 150–170. [Google Scholar] [CrossRef]
- Daghooghi, M.; Borazjani, I. The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids. J. Fluid Mech. 2015, 781, 506–549. [Google Scholar] [CrossRef]
- Daghooghi, M.; Borazjani, I. The effects of irregular shape on the particle stress of dilute suspensions. J. Fluid Mech. 2018, 839, 663–692. [Google Scholar] [CrossRef]
- Ardeshiri, H.; Schmitt, F.; Souissi, S.; Toschi, F.; Calzavarini, E. Copepods encounter rates from a model of escape jump behaviour in turbulence. J. Plankton Res. 2017, 39, 878–890. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Meneveau, C.; Osborn, T.R. Numerical study of the feeding current around a copepod. J. Plankton Res. 1999, 21, 1391. [Google Scholar] [CrossRef]
- Jiang, H.; Meneveau, C.; Osborn, T.R. The flow field around a freely swimming copepod in steady motion. Part II: Numerical simulation. J. Plankton Res. 2002, 24, 191. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Osborn, T.R.; Meneveau, C. Hydrodynamic interaction between two copepods: A numerical study. J. Plankton Res. 2002, 24, 235. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.C.; Wray, A.A.; Moin, P. Eddies, Streams, and Convergence Zones in Turbulent Flows; Center for Turbulence Research Report CTR-S88; NASA: Washington, DC, USA, 1988.
- Bottom, R., II; Borazjani, I.; Blevins, E.; Lauder, G. Hydrodynamics of swimming in stingrays: Numerical simulations and the role of the leading-edge vortex. J. Fluid Mech. 2016, 788, 407–443. [Google Scholar] [CrossRef] [Green Version]
- Jumars, P.A.; Trowbridge, J.H.; Boss, E.; Karp-Boss, L. Turbulence-plankton interactions: A new cartoon. Mar. Ecol. 2009, 30, 133–150. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borazjani, I. Numerical Simulations of Flow around Copepods: Challenges and Future Directions. Fluids 2020, 5, 52. https://doi.org/10.3390/fluids5020052
Borazjani I. Numerical Simulations of Flow around Copepods: Challenges and Future Directions. Fluids. 2020; 5(2):52. https://doi.org/10.3390/fluids5020052
Chicago/Turabian StyleBorazjani, Iman. 2020. "Numerical Simulations of Flow around Copepods: Challenges and Future Directions" Fluids 5, no. 2: 52. https://doi.org/10.3390/fluids5020052
APA StyleBorazjani, I. (2020). Numerical Simulations of Flow around Copepods: Challenges and Future Directions. Fluids, 5(2), 52. https://doi.org/10.3390/fluids5020052