The Heat Flux Vector(s) in a Two Component Fluid Mixture
Abstract
:1. Introduction
2. Review of the Basic Equations of Mixture Theory
2.1. Background
2.2. Conservation of Mass
2.3. Conservation of Linear Momentum
2.4. Conservation of Angular Momentum
2.5. Conservation of Energy
2.6. Entropy Tendency
3. Constitutive Equations
3.1. Theory
3.2. Linear Constitutive Equations for a Mixture of Two Fluids
4. Entropy Production Constraints on the Constitutive Equations
5. Special Cases
5.1. Heat Flux
5.2. Green Adkins Massoudi Theory
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dunwoody, N.T.; Müller, I.A. A thermodynamic theory of two chemically reacting ideal gases with different temperatures. Arch. Ration. Mech. Anal. 1968, 29, 344–369. [Google Scholar] [CrossRef]
- Bowen, R.M.; Garcia, D.J. On the thermodynamics of mixtures with several temperatures. Int. J. Eng. Sci. 1970, 8, 63–83. [Google Scholar] [CrossRef]
- Ahmadi, G. Thermodynamics of multi-temperature fluids with applications to turbulence modelling. Appl. Math. Model. 1985, 9, 271–274. [Google Scholar] [CrossRef]
- Maxwell, J.C. On the dynamic theory of gases. Philos. Trans. R. Soc. Lond. 1867, 147, 49–88. [Google Scholar]
- Cattaneo, C. Sulla Conduzione Del Calore. Atti Semin. Mat. Fis. Univ. Modena 1948, 3, 83–101. [Google Scholar]
- Jou, D.; Casas-Vazquez, J.; Lebon, G. Extended Irreversible Thermodynamics. In Extended Irreversible Thermodynamics; Springer: Berlin, Germany, 1996; pp. 41–74. [Google Scholar]
- Petroski, H.J. Departures from Fourier’s law. ZAMP 1975, 26, 119–124. [Google Scholar] [CrossRef]
- Mitchell, J.K. Conduction phenomena: From theory to geotechnical practice. Geotechnique 1991, 41, 299–340. [Google Scholar] [CrossRef]
- Bashir, Y.M.; Goddard, J.D. Experiments on the conductivity of suspensions of ionically conductive spheres. AlChE J. 1990, 36, 387–396. [Google Scholar] [CrossRef]
- Prasher, R.S.; Koning, P.; Shipley, J.; Devpura, A. Dependence of thermal conductivity and mechanical rigidity of particle-laden polymeric thermal interface material on particle volume fraction. ASME J. Electron. Packag. 2003, 125, 386–391. [Google Scholar] [CrossRef]
- Lee, D.L.; Irvine, T.F., Jr. Shear rate dependent thermal conductivity measurements of non-Newtonian fluids. Exp. Therm. Fluid Sci. 1997, 15, 16–24. [Google Scholar] [CrossRef]
- Massoudi, M. On the heat flux vector for flowing granular materials, Part 1: Effective thermal conductivity and background. Math. Methods Appl. Sci. 2006, 29, 1585–1598. [Google Scholar] [CrossRef]
- Massoudi, M. On the heat flux vector for flowing granular materials, Part 2: Derivation and special cases. Math. Methods Appl. Sci. 2006, 29, 1599–1613. [Google Scholar] [CrossRef]
- Massoudi, M. On the heat flux vector in mixtures. Int. Commun. Heat Mass Transf. 2005, 32, 1111–1266. [Google Scholar] [CrossRef]
- Klika, V.; Pavelka, M.; Benziger, J.B. Functional constraints on phenomenological coefficients. Phys. Rev. E 2017, 95, 022125. [Google Scholar] [CrossRef]
- Klika, V.; Krause, A.L. Beyond Onsager-Casimir relations: Shared dependence of phenomenological coefficients on state variables. J. Phys. Chem. Lett. 2018, 9. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 2000, 88, 207–227. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. Modeling anisotropic fluids within the framework of bodies with multiple natural configurations. J. Non-Newtonian Fluid Mech. 2001, 99, 109–124. [Google Scholar] [CrossRef]
- Rajagopal, K.; Srinivasa, A. On the development of fluid models of the differential type within a new thermodynamical framework. Mech. Res. Commun. 2008. [Google Scholar] [CrossRef]
- Klika, V. A guide through available mixture theories for applications. Crit. Rev. Solid State Mater. Sci. 2014, 39, 154–174. [Google Scholar] [CrossRef]
- Truesdell, C. Rational Thermodynamics, 2nd ed.; Springer: New York, NY, USA, 1984. [Google Scholar]
- Rajagopal, K.R.; Tao, L. Mechanics of Mixtures; World Scientific: Singapore, 1995. [Google Scholar]
- Atkin, R.J.; Craine, R.E. Continuum theories of mixtures: Applications. IMA J. Appl. Math 1976, 17, 153–207. [Google Scholar] [CrossRef]
- Atkin, R.J.; Craine, R.E. Continuum theories of mixtures: Basic theory and historical development. Q. J. Mech. Appl. Math. 1976, 29, 209–244. [Google Scholar] [CrossRef]
- Bowen, R.M. Theory of Mixtures. In Continuum Physics; Eringen, A.C., Ed.; Academic Press: New York, NY, USA, 1976; Volume 3, pp. 1–127. [Google Scholar]
- Kirwan, A.D., Jr. Second Law constraints on the dynamics of a mixture of two fluids at different temperatures. Entropy 2012, 14, 880–891. [Google Scholar] [CrossRef]
- Hansen, A.C.; Crane, R.L.; Damson, M.H.; Donovan, M.H.; Horning, R.P.; Walker, J.L. Some notes on a volume fraction mixture theory and a comparison with the kinetic theory of gases. Int. J. Eng. Sci. 1991, 29, 561–573. [Google Scholar] [CrossRef]
- Beevers, C.E.; Craine, R.E. On the determination of response functions for a binary mixture of incompressible Newtonian fluids. Int. J. Eng. Sci. 1982, 20, 737–745. [Google Scholar] [CrossRef]
- Eckart, C. The thermodynamics of irreversible processes, II Fluid mixtures. Phys. Rev. E 1940, 58, 269–275. [Google Scholar] [CrossRef]
- Truesdell, C.; Noll, W. The Classical Field Theories; Springer: Berlin, Germany, 1965; Volume 3. [Google Scholar]
- Green, A.E.; Naghdi, P.M. A theory of mixtures. Arch. Ration. Mech. Anal. 1967, 24, 243–263. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. A note on mixtures. Int. J. Eng. Sci. 1968, 6, 631–635. [Google Scholar] [CrossRef]
- Massoudi, M. A note on the meaning of mixture viscosity using the classical continuum theories of mixtures. Int. J. Eng. Sci. 2008, 46, 677–689. [Google Scholar] [CrossRef]
- Müller, I.A. A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 1968, 28, 1–39. [Google Scholar] [CrossRef]
- Dunn, J.E.; Serrin, J. On thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 1985, 88, 95–133. [Google Scholar] [CrossRef]
- Grmela, M. Externally driven macroscopic systems: Dynamics versus thermodynamics. J. Stat. Phys. 2017, 166, 282–316. [Google Scholar] [CrossRef]
- Grmela, M. Generic guide to the multiscale dynamics and thermodynamics. J. Phys. Commun. 2018, 2, 032001. [Google Scholar] [CrossRef]
- de Groot, S.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Zheng, Q.S. Theory of representations for tensor functions—A unified invariant approach to constitutive equations. Appl. Mech. Rev. 1994, 47, 545–587. [Google Scholar] [CrossRef]
- Massoudi, M. Constitutive relations for the interaction force in multicomponent particulate flows. Int. J. Non-Linear Mech. 2003, 38, 313–336. [Google Scholar] [CrossRef]
- Kuiken, G.D.C. Thermodynamics of Irreversible Processes; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Klika, V.; Whiteley, J.P.; Brown, C.P.; Gaffney, E.A. The combined impact of tissue heterogeneity and fixed charge for models of cartilage: The one-dimensional biphasic swelling model revisited. Biomech. Model. Mechanobiol. 2019, 18, 953–968. [Google Scholar] [CrossRef]
- Yang, H.; Massoudi, M. Conduction and convection heat transfer in a dense granular suspension. Appl. Math. Comput. 2018, 332, 351–362. [Google Scholar] [CrossRef]
- Yang, H.; Massoudi, M.; Kirwan, A.D., Jr. Entropy analysis for a nonlinear fluid with a nonlinear heat flux vector. Entropy 2017, 19, 689. [Google Scholar] [CrossRef] [Green Version]
- Massoudi, M. On the flow of granular materials with variable material properties. Int. J. Non-Linear Mech. 2001, 36, 25–37. [Google Scholar] [CrossRef]
- Massoudi, M.; Kirwan, A.D., Jr. On the thermodynamics of a nonlinear heat conducting suspension. Fluids 2016, 1, 19. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirwan, A.D., Jr.; Massoudi, M. The Heat Flux Vector(s) in a Two Component Fluid Mixture. Fluids 2020, 5, 77. https://doi.org/10.3390/fluids5020077
Kirwan AD Jr., Massoudi M. The Heat Flux Vector(s) in a Two Component Fluid Mixture. Fluids. 2020; 5(2):77. https://doi.org/10.3390/fluids5020077
Chicago/Turabian StyleKirwan, A. D., Jr., and Mehrdad Massoudi. 2020. "The Heat Flux Vector(s) in a Two Component Fluid Mixture" Fluids 5, no. 2: 77. https://doi.org/10.3390/fluids5020077
APA StyleKirwan, A. D., Jr., & Massoudi, M. (2020). The Heat Flux Vector(s) in a Two Component Fluid Mixture. Fluids, 5(2), 77. https://doi.org/10.3390/fluids5020077