Hydrodynamic Dispersion in Porous Media and the Significance of Lagrangian Time and Space Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lattice Boltzmann Method
2.2. LBM Code Validation and Verification
2.3. Lagrangian Particle Tracking
2.4. Velocity Autocorrelation Function
2.5. Scope of Work
3. Results
3.1. Velocity Autocorrelation Function
3.2. Hydrodynamic Dispersion Coefficient
4. Discussion
4.1. Velocity Autocorrelation Function and Lagrangian Timescale
4.2. Hydrodynamic Dispersion Coefficient
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | geometrical coefficient |
c | speed of sound |
dp | sphere diameter |
diffusion coefficient in the pure solvent | |
effective diffusion coefficient in porous media | |
microscopic velocity | |
ƒ | particle distribution function |
ƒeq | particle equilibrium distribution function |
ƒƒ | forcing factor |
F | formation electrical resistivity factor |
k | permeability of the porous media |
length of the path traveled by a substance | |
straight-line length | |
length of porous media in x direction | |
m | dimensionality indication (m=1, 2, 3) |
n | number of allowable directions |
effective Eulerian Peclet number | |
Eulerian Peclet number | |
effective Lagrangian Peclet number | |
Lagrangian Peclet number | |
Reynolds number | |
velocity correlation coefficient | |
Sc | Schmidt number |
t | Time |
initial time (t = 0) | |
pore velocity | |
superficial velocity | |
macroscopic velocity | |
velocity of a particle | |
velocity fluctuation | |
lattice specific weighing factor | |
Position | |
x | location in the flow direction |
location of a particle | |
Greek symbols | |
time interval of each time step | |
lattice constant | |
pressure drop | |
movement due to diffusion | |
Porosity | |
fluid dynamic viscosity | |
fluid kinematic viscosity | |
fluid density | |
σ | standard deviation |
position variance | |
τ | Timescale |
relaxion time | |
diffusive tortuosity | |
Lagrangian timescale | |
Ω | collision operator |
Subscripts and superscripts | |
i | lattice direction index |
j | nano-particle index |
average value |
Appendix A. The Grid Independence Analysis for FCC and RPS
Domain Resolution | Number of Grid Points | FCC_Mean Velocity (μm/s) | Error (%) Compared to (501 × 501 × 501) | RS Mean Velocity (μm/s) | Error (%) Compared to (501 × 501 × 501) |
---|---|---|---|---|---|
101 × 101 × 101 | 1,030,301 | 502.340 | 0.972% | 478.762 | 6.376% |
201 × 201 × 201 | 8,120,601 | 500.130 | 0.528% | 500.174 | 2.189% |
301 × 301 × 301 | 27,270,901 | 497.880 | 0.075% | 505.520 | 1.143% |
401 × 401 × 401 | 64,481,201 | 497.540 | 0.007% | 508.920 | 0.478% |
501 × 501 × 501 | 125,751,501 | 497.505 | 0.000 | 511.367 | 0.000 |
Appendix B
Sc | Pore velocity, u (cm/s) | FCC | RPS | ||||||
---|---|---|---|---|---|---|---|---|---|
(s) | (s) | ||||||||
100 | 5.00 × 10−3 | 1.00 × 10−3 | 4.94 × 10−1 | 9.83 × 10−1 | 1.50 × 10−3 | 3.00 × 10−4 | 1.10 × 10−1 | 9.60 × 10−1 | 8.20 × 10−4 |
1.00 × 10−2 | 2.00 × 10−3 | 9.88 × 10−1 | 9.99 × 10−1 | 1.40 × 10−3 | 1.30 × 10−3 | 2.10 × 10−1 | 1.02 | 8.70 × 10−4 | |
2.00 × 10−2 | 8.00 × 10−3 | 1.98 | 9.85 × 10−1 | 1.40 × 10−3 | 5.50 × 10−3 | 4.30 × 10−1 | 1.01 | 9.10 × 10−4 | |
5.00 × 10−2 | 4.80 × 10−2 | 4.94 | 1.01 | 1.40 × 10−3 | 3.08 × 10−2 | 1.09 | 1.03 | 7.80 × 10−4 | |
1.00 × 10−1 | 1.68 × 10−1 | 9.88 | 1.00 | 1.20 × 10−3 | 1.10 × 10−1 | 2.13 | 1.14 | 7.30 × 10−4 | |
2.00 × 10−1 | 5.77 × 10−1 | 1.98 × 10 | 1.12 | 1.00 × 10−3 | 3.95 × 10−1 | 4.27 | 1.37 | 6.50 × 10−4 | |
3.00 × 10−1 | 1.15 | 2.96 × 10 | 1.39 | 9.10 × 10−4 | 7.29 × 10−1 | 6.40 | 1.74 | 5.30 × 10−4 | |
4.00 × 10−1 | 2.00 | 3.95 × 10 | 1.71 | 8.90 × 10−4 | 1.13 | 8.53 | 2.11 | 4.70 × 10−4 | |
1000 | 5.00 × 10−3 | 4.70 × 10−2 | 4.96 | 9.90 × 10−1 | 1.30 × 10−2 | 3.70 × 10−2 | 1.08 | 1.02 | 9.40 × 10−3 |
1.00 × 10−2 | 1.68 × 10−1 | 9.93 | 1.01 | 1.20 × 10−2 | 1.18 × 10−1 | 2.13 | 1.12 | 7.80 × 10−3 | |
2.00 × 10−2 | 5.88 × 10−1 | 1.99 × 10 | 1.14 | 1.00 × 10−2 | 3.92 × 10−1 | 4.26 | 1.40 | 6.50 × 10−3 | |
5.00 × 10−2 | 3.01 | 4.96 × 10 | 2.16 | 8.60 × 10−3 | 1.54 | 1.09 × 10 | 2.55 | 3.90 × 10−3 | |
1.00 × 10−1 | 1.07 × 10 | 9.93 × 10 | 5.24 | 7.60 × 10−3 | 3.94 | 2.13 × 10 | 5.15 | 2.60 × 10−3 | |
2.00 × 10−1 | 3.59 × 10 | 1.99 × 102 | 1.65 × 10 | 6.40 × 10−3 | 1.04 × 10 | 4.26 × 10 | 1.23 × 10 | 1.70 × 10−3 | |
3.00 × 10−1 | 7.78 × 10 | 2.98 × 102 | 3.29 × 10 | 6.20 × 10−3 | 1.71 × 10 | 6.39 × 10 | 2.17 × 10 | 1.30 × 10−3 | |
4.00 × 10−1 | 1.19 × 102 | 3.97 × 102 | 5.35 × 10 | 5.30 × 10−3 | 2.87 × 10 | 8.53 × 10 | 3.18 × 10 | 1.20 × 10−3 | |
7080 | 5.00 × 10−3 | 1.56 | 3.55 × 10 | 1.63 | 6.20 × 10−2 | 9.04 × 10−1 | 7.47 | 1.91 | 3.30 × 10−2 |
1.00 × 10−2 | 5.59 | 7.09 × 10 | 3.28 | 5.60 × 10−2 | 2.38 | 1.47 × 10 | 3.39 | 2.30 × 10−2 | |
2.00 × 10−2 | 1.97 × 10 | 1.42 × 102 | 9.19 | 4.90 × 10−2 | 5.98 | 2.94 × 10 | 7.77 | 1.40 × 10−2 | |
5.00 × 10−2 | 1.02 × 102 | 3.55 × 102 | 4.37 × 10 | 4.10 × 10−2 | 2.33 × 10 | 7.47 × 10 | 2.62 × 10 | 8.60 × 10−3 | |
1.00 × 10−1 | 3.32 × 102 | 7.09 × 102 | 1.45 × 102 | 3.30 × 10−2 | 5.95 × 10 | 1.47 × 102 | 6.73 × 10 | 5.70 × 10−3 | |
2.00 × 10−1 | 1.18 × 103 | 1.42 × 103 | 4.86 × 102 | 2.90 × 10−2 | 1.56 × 102 | 2.93 × 102 | 1.69 × 102 | 3.70 × 10−3 | |
3.00 × 10−1 | 2.35 × 103 | 2.13 × 103 | 1.01 × 103 | 2.60 × 10−2 | 2.48 × 102 | 4.40 × 102 | 2.82 × 102 | 2.60 × 10−3 | |
4.00 × 10−1 | 3.86 × 103 | 2.84 × 103 | 1.68 × 103 | 2.40 × 10−2 | 3.64 × 102 | 5.87 × 102 | 4.11 × 102 | 2.20 × 10−3 | |
10000 | 5.00 × 10−3 | 3.07 | 5.04 × 10 | 2.17 | 8.60 × 10−2 | 1.26 | 1.09 × 10 | 2.55 | 3.20 × 10−2 |
1.00 × 10−2 | 1.04 × 10 | 1.01 × 102 | 5.26 | 7.30 × 10−2 | 3.69 | 2.15 × 10 | 5.20 | 2.40 × 10−2 | |
2.00 × 10−2 | 3.75 × 10 | 2.02 × 102 | 1.65 × 10 | 6.60 × 10−2 | 9.86 | 4.29 × 10 | 1.25 × 10 | 1.60 × 10−2 | |
5.00 × 10−2 | 1.86 × 102 | 5.04 × 102 | 8.03 × 10 | 5.20 × 10−2 | 4.06 × 10 | 1.09 × 102 | 4.41 × 10 | 1.00 × 10−2 | |
1.00 × 10−1 | 6.38 × 102 | 1.01 × 103 | 2.68 × 102 | 4.50 × 10−2 | 1.02 × 102 | 2.15 × 102 | 1.11 × 102 | 6.70 × 10−3 | |
2.00 × 10−1 | 2.13 × 103 | 2.02 × 103 | 9.24 × 102 | 3.70 × 10−2 | 2.41 × 102 | 4.29 × 102 | 2.72 × 102 | 4.00 × 10−3 | |
3.00 × 10−1 | 4.54 × 103 | 3.03 × 103 | 1.91 × 103 | 3.50 × 10−2 | 4.08 × 102 | 6.44 × 102 | 4.58 × 102 | 3.00 × 10−3 | |
4.00 × 10−1 | 7.50 × 103 | 4.03 × 103 | 3.15 × 103 | 3.30 × 10−2 | 6.13 × 102 | 8.58 × 102 | 6.55 × 102 | 2.50 × 10−3 |
References
- Vu, T.V.; Papavassiliou, D.V. Synergistic effects of surfactants and heterogeneous nanoparticles at oil-water interface: Insights from computations. J. Colloid Interface Sci. 2019, 553, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.H.; Voronov, R.S.; Tummala, N.R.; Papavassiliou, D.V. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014, 89, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.P.; Frenkel, D. Do hydrodynamic dispersion coefficients exist? Phys. Rev. Lett. 1996, 77, 4552–4555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, D. Hydrodynamic Dispersion. In Encyclopedia of Microfluidics and Nanofluidics; Springer: Boston, MA, USA, 2013; pp. 1–14. [Google Scholar]
- Delgado, J.M.P.Q. Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 2007, 85, 1245–1252. [Google Scholar] [CrossRef]
- Perkins, T.K.; Johnston, O.C. A Review of Diffusion and Dispersion in Porous Media. Soc. Pet. Eng. J. 1963, 3, 70–84. [Google Scholar] [CrossRef]
- Koch, D.L.; Brady, J.F. Dispersion in fixed beds. J. Fluid Mech. 1985, 154, 399–427. [Google Scholar] [CrossRef]
- Zhu, Y.; Fox, P.J. Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J. Comput. Phys. 2002, 182, 622–645. [Google Scholar] [CrossRef]
- Hunt, A.G.; Ewing, R.P.; Sahimi, M. Tortuosity in Porous Media: A Critical Review. Soil Sci. Soc. Am. J. 2013, 77, 1461–1477. [Google Scholar] [CrossRef]
- Sahimi, M. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Sahimi, M. Flow phenomena in rocks: From continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 1993, 65, 1393–1534. [Google Scholar] [CrossRef]
- Kim, A.S.; Chen, H. Diffusive tortuosity factor of solid and soft cake layers: A random walk simulation approach. J. Memb. Sci. 2006, 279, 129–139. [Google Scholar] [CrossRef]
- Satterfield, C.N.; Sherwood, T.K. The Role of Diffusion in Catalysis; Addison-Wesley: Boston, MA, USA, 1963. [Google Scholar]
- Ben Clennell, M. Tortuosity: A guide through the maze. Geol. Soc. Spec. Publ. 1997, 122, 299–344. [Google Scholar] [CrossRef]
- Moldrup, P.; Olesen, T.; Komatsu, T.; Schjønning, P.; Rolston, D.E. Tortuosity, Diffusivity, and Permeability in the Soil Liquid and Gaseous Phases. Soil Sci. Soc. Am. J. 2001, 65, 613–623. [Google Scholar] [CrossRef]
- Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 1989, 44, 777–779. [Google Scholar] [CrossRef]
- Currie, J.A. Gaseous diffusion in porous media. Part 2.—Dry granular materials. Br. J. Appl. Phys. 1960, 11, 318–324. [Google Scholar] [CrossRef]
- Klinkenberg, L.J. Analog Between Diffusion and Electrical Conductivity in Porous Rocks. Geol. Soc. Am. Bull. 1951, 62, 559–564. [Google Scholar] [CrossRef]
- Grane, F.E.; Gardner, G.H.F. Measurements of Transverse Dispersion in Granular Media. J. Chem. Eng. Data 1961, 6, 283–287. [Google Scholar] [CrossRef]
- Li, Z.; Dong, M. Experimental study of diffusive tortuosity of liquid-saturated consolidated porous media. Ind. Eng. Chem. Res. 2010, 49, 6231–6237. [Google Scholar] [CrossRef]
- Fried, J.J.; Combarnous, M.A. Dispersion in Porous Media; Academic Press: New York, NY, USA, 1971; Volume 7. [Google Scholar]
- Rose, D.A. Some aspects of the hydrodynamic dispersion of solutes in porous materials. J. Soil Sci. 1973, 24, 284–295. [Google Scholar] [CrossRef]
- Mohamad, A.A. Lattice Boltzmann Method; Springer: London, UK, 2011; Volume 20. [Google Scholar]
- Voronov, R.S.; VanGordon, S.B.; Sikavitsas, V.I.; Papavassiliou, D.V. Efficient Lagrangian scalar tracking method for reactive local mass transport simulation through porous media. Int. J. Numer. Methods Fluids 2011, 67, 501–517. [Google Scholar] [CrossRef]
- Chen, G.D.; Doolen, S. Lattice Boltzmann Method for fluid flows. Annu. Rev. Fluid Mech. Palo Alto 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.H.; Swatske, D.P.; Harwell, J.H.; Shiau, B.J.; Papavassiliou, D.V. Transport of nanoparticles and kinetics in packed beds: A numerical approach with lattice Boltzmann simulations and particle tracking. Int. J. Heat Mass Transf. 2014, 72, 319–328. [Google Scholar] [CrossRef]
- Massoudi, M. Boundary conditions in mixture theory and in CFD applications of higher order models. Comput. Math. Appl. 2007, 53, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Mofakham, A.A.; Stadelman, M.; Ahmadi, G.; Shanley, K.T.; Crandall, D. Computational modeling of hydraulic properties of a sheared single rock fracture. Transp. Porous Media 2018, 124, 1–30. [Google Scholar] [CrossRef]
- Voronov, R.; VanGordon, S.; Sikavitsas, V.I.; Papavassiliou, D.V. Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. J. Biomech. 2010, 43, 1279–1286. [Google Scholar] [CrossRef]
- Pham, N.H.; Papavassiliou, D.V. Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods. Comput. Part. Mech. 2017, 4, 87–100. [Google Scholar] [CrossRef]
- Bird, W.E.; Stewart, R.B. Transport Phenomena; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Chapman, A.M.; Higdon, J.J.L. Oscillatory Stokes flow in periodic porous media. Phys. Fluids A 1992, 4, 2099–2116. [Google Scholar] [CrossRef]
- Eshghinejadfard, A.; Daróczy, L.; Janiga, G.; Thévenin, D. Calculation of the permeability in porous media using the lattice Boltzmann method. Int. J. Heat Fluid Flow 2016, 62, 93–103. [Google Scholar] [CrossRef]
- Taylor, G.I. Diffusion by continuous movements. Proc. Lond. Math. Soc. 1992, 2, 196–212. [Google Scholar] [CrossRef]
- Saffman, P.G. On the effect of the molecular diffusivity in turbulent diffusion. J. Fluid Mech. 1960, 8, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, C.; Papavassiliou, D.V. Backwards and forwards dispersion of a scalar in turbulent wall flows. Int. J. Heat Mass Transf. 2010, 53, 1023–1035. [Google Scholar] [CrossRef]
- Le, P.M.; Papavassiliou, D.V. Turbulent dispersion from elevated line sources in channel and couette flow. AIChE J. 2005, 51, 2402–2414. [Google Scholar] [CrossRef]
- Mito, Y.; Hanratty, T.J. Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow. Flow Turbul. Combust. 2 0002, 68, 1–26, 2002. [Google Scholar] [CrossRef]
- Luo, J.P.; Lu, Z.M.; Liu, Y.L. Lagrangian time scales and its relationship to Eulerian equivalents in turbulent channel flow. J. Shanghai Univ. 2010, 14, 71–75. [Google Scholar] [CrossRef]
- Luo, J.; Ushijima, T.; Kitoh, O.; Lu, Z.; Liu, Y. Lagrangian dispersion in turbulent channel flow and its relationship to Eulerian statistics. Int. J. Heat Fluid Flow 2007, 28, 871–881. [Google Scholar] [CrossRef]
- Lubachevsky, B.D.; Stillinger, F.H. Geometric properties of random disk packings. J. Stat. Phys. 1990, 60, 561–583. [Google Scholar] [CrossRef]
- Skoge, M.; Donev, A.; Stillinger, F.H.; Torquato, S. Packing hyperspheres in high-dimensional Euclidean spaces. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 74, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Manz, B.; Gladden, L.F.; Warren, P.B. Flow and dispersion in porous media: Lattice-Boltzmann and N M R studies. AIChE J. 1999, 45, 1845–1854. [Google Scholar] [CrossRef]
- Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1953, 219, 186–203. [Google Scholar] [CrossRef]
- Aris, R. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1956, 235, 67–77. [Google Scholar]
Reference | Conditions | Equations of Hydrodynamic Dispersion Coefficient |
---|---|---|
Fried-Combranous [21] | ||
Hiby [5,22] | ||
Harleman et al. [22] | ||
Koch and Brady [7] | Impermeable packed bed | |
Delgado et al. [5] | Longitudinal dispersion | |
Diffusion regime | ||
Predominant diffusional regime | ||
Predominant mechanical dispersion ( and ) | ||
Pure mechanical dispersion ( and ) | ||
Dispersion out of Darcy domain ) | ||
Transverse dispersion | ||
Diffusion regime () | ||
Predominant mechanical dispersion () | ||
Pure mechanical dispersion () | ||
Dispersion out of Darcy domain () |
Geometry | Porosity | Dimensionless Permeability (k/dp2) | Relative Error (%)Compared to | |||
---|---|---|---|---|---|---|
Present Results | Reference (1) [32] | Reference (2) [33] | Reference (1) [32] | Reference (2) [33] | ||
FCC | 0.26 | 1.75 × 10−4 | 1.74 × 10−4 | 1.70 × 10−4 | 0.76% | 2.96% |
BCC | 0.32 | 5.10 × 10−4 | 5.02 × 10−4 | 5.10 × 10−4 | 1.49% | 0.10% |
SC | 0.48 | 2.61 × 10−3 | 2.53 × 10−3 | 3.10% |
Parameter | SC | BCC | FCC | RPS |
---|---|---|---|---|
Porosity, | 0.48 | 0.32 | 0.26 | 0.37 |
Spheres’ diameter, dp (cm) | 1.00 × 10−3 | 8.66 × 10−3 | 7.07 × 10−3 | 1.41 × 10−3 |
Pressure drop, (g/cm2 s2) | 3.66 × 103 | 1.67 × 104 | 5.93 × 104 | 5.33 × 105 |
Pore velocity (cm/s) | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 |
Superficial velocity, (cm/s) | 9.53 × 10−2 | 6.40 × 10−2 | 5.19 × 10−2 | 7.42 × 10−2 |
Blake–Kozeny velocity (cm/s) | 9.62 × 10−2 | 5.92 × 10−2 | 6.31 × 10−2 | 9.08 × 10−2 |
Relative error | 0.91% | 8.08% | 17.70% | 18.26% |
Correlation Scheme | Correlation Equation | Mean Relative Error |
---|---|---|
1 | 6.3% | |
2 | 3.3% | |
3 | 3.3% |
Correlation Scheme | Correlation Equation | Mean Relative Error |
---|---|---|
1 | 13.5% | |
2 | 15.5% | |
3 | 3.1% |
Geometry | Porosity | Permeability k (cm2) | Diameter of Spheres dp (cm) | Darcy Number Da = k/dp2 | A |
---|---|---|---|---|---|
FCC | 0.26 | 8.75 × 10−9 | 7.07 × 10−3 | 1.75 × 10−4 | 0.423 |
BCC | 0.32 | 3.82 × 10−8 | 8.66 × 10−3 | 5.10 × 10−4 | 0.933 |
RPS-432 spheres | 0.37 | 1.39 × 10−9 | 1.41 × 10−3 | 7.04 × 10−4 | 1.096 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.; Papavassiliou, D.V. Hydrodynamic Dispersion in Porous Media and the Significance of Lagrangian Time and Space Scales. Fluids 2020, 5, 79. https://doi.org/10.3390/fluids5020079
Nguyen V, Papavassiliou DV. Hydrodynamic Dispersion in Porous Media and the Significance of Lagrangian Time and Space Scales. Fluids. 2020; 5(2):79. https://doi.org/10.3390/fluids5020079
Chicago/Turabian StyleNguyen, Vi, and Dimitrios V. Papavassiliou. 2020. "Hydrodynamic Dispersion in Porous Media and the Significance of Lagrangian Time and Space Scales" Fluids 5, no. 2: 79. https://doi.org/10.3390/fluids5020079
APA StyleNguyen, V., & Papavassiliou, D. V. (2020). Hydrodynamic Dispersion in Porous Media and the Significance of Lagrangian Time and Space Scales. Fluids, 5(2), 79. https://doi.org/10.3390/fluids5020079