Control and Optimization of Interfacial Flows Using Adjoint-Based Techniques
Abstract
:1. Introduction
2. Continuous Governing Equations
2.1. Objective Functional
2.2. Primal (Forward) Problem
2.3. Dual (Adjoint) Problem
3. Discrete Governing Equations
3.1. Objective Functional
3.2. The Thinc Scheme
- is the non-dimensional slope steepness, defining the sharpness of the interface. Larger values imply sharper interfaces. Note that is often expressed in terms of two other parameters as follows
- is the interface direction
- is the non-dimensional intercept or jump location, which defines the level set of , and is imposed by the volume conservation constraint
3.3. Primal (Forward) Problem
3.4. Dual (Adjoint) Problem
4. Optimisation Algorithm
Algorithm 1: Optimization algorithm for Equation (1) |
5. Results
5.1. Validation: One-Dimensional Droplets
5.2. Two-Dimensional Tests
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016, 797, 60–94. [Google Scholar] [CrossRef]
- Habla, F.; Fernandes, C.; Maier, M.; Densky, L.; Ferrás, L.L.; Rajkumar, A.; Carneiro, O.S.; Hinrichsen, O.; Nóbrega, J.M. Development and validation of a model for the temperature distribution in the extrusion calibration stage. Appl. Therm. Eng. 2016, 100, 538–552. [Google Scholar] [CrossRef]
- Fernandes, C.; Faroughi, S.A.; Carneiro, O.S.; Nóbrega, J.M.; McKinley, G.H. Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method. J. Non Newton. Fluid Mech. 2019, 266, 80–94. [Google Scholar] [CrossRef] [Green Version]
- de Campos Galuppo, W.; Magalhães, A.; Ferrás, L.L.; Nóbrega, J.M.; Fernandes, C. New boundary conditions for simulating the filling stage of the injection molding process. Eng. Comput. 2020. [Google Scholar] [CrossRef]
- Khaliq, M.H.; Gomes, R.; Fernandes, C.; Nóbrega, J.M.; Carneiro, O.S.; Ferrás, L.L. On the use of high viscosity polymers in the fused filament fabrication process. Rapid Prototyp. J. 2017, 23, 727–735. [Google Scholar] [CrossRef]
- Le Chenadec, V.; Pitsch, H. A Conservative Framework For Primary Atomization Computation and Application to the Study of Nozzle and Density Ratio Effects. At. Sprays 2013, 23, 1139–1165. [Google Scholar] [CrossRef]
- Marsden, A.; Feinstein, J.; Taylor, C. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 2008, 197, 1890–1905. [Google Scholar] [CrossRef]
- Pierret, S.; Coelho, R.; Kato, H. Multidisciplinary and multiple operating points shape optimization of three-dimensional compressor blades, Structural and Multidisciplinary Optimization. Comput. Methods Appl. Mech. Eng. 2007, 33, 61–70. [Google Scholar]
- Pironneau, O. On optimum design in fluid mechanics. J. Fluid Mech. 1974, 64, 97–110. [Google Scholar] [CrossRef]
- Jameson, A. Aerodynamic design via control theory. J. Sci. Comput. 1988, 3, 233–260. [Google Scholar] [CrossRef] [Green Version]
- Jameson, A.; Martinelli, L.; Pierce, N.A. Optimum Aerodynamic Design Using the Navier-Stokes Equations. Theor. Comp. Fluid Dyn. 1998, 10, 213–237. [Google Scholar] [CrossRef] [Green Version]
- Reuther, J.J.; Jameson, A.; Alonso, J.J.; Rimlinger, M.J.; Saunders, D. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 2. J. Aircr. 1999, 36, 61–74. [Google Scholar] [CrossRef]
- Juniper, M. Triggering in the horizontal Rijke tube: Non-normality, transient growth and bypass transition. J. Fluid Mech. 2010, 667, 272–308. [Google Scholar] [CrossRef] [Green Version]
- Lemke, M.; Reiss, J.; Sesterhenn, J. Adjoint-based analysis of thermoacoustic coupling. AIP Conf. Proc. Am. Inst. Phys. 2013, 1558, 2163–2166. [Google Scholar]
- Nemili, A.; Özkaya, E.; Gauger, N.; Kramer, F.; Thiele, F. Discrete adjoint based optimal active control of separation on a realistic high-lift configuration. In New Results in Numerical and Experimental Fluid Mechanics X: Contributions to the 19th STAB/DGLR Symposium Munich, Germany, 2014; Springer: Berlin/Heidelberg, Germany, 2016; pp. 237–246. [Google Scholar]
- Schmidt, S.; Ilic, C.; Schulz, V.; Gauger, N. Three-dimensional large-scale aerodynamic shape optimization based on shape calculus. AIAA J. 2013, 51, 2615–2627. [Google Scholar] [CrossRef] [Green Version]
- Rabin, S.; Caulfield, C.; Kerswell, R. Designing a more nonlinearly stable laminar flow via boundary manipulation. J. Fluid Mech. R1 2014, 738, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Foures, D.; Caulfield, C.; Schmid, P. Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. J. Fluid Mech. 2014, 748, 241–277. [Google Scholar] [CrossRef] [Green Version]
- Cacuci, D.G.; Ionescu-Bujor, M. Adjoint sensitivity analysis of the RELAP5 MOD3.2 two-fluid thermal-hydraulic code system—I: Theory. Nucl. Sci. Eng. 2000, 136, 59–84. [Google Scholar] [CrossRef]
- Ionescu-Bujor, M.; Cacuci, D.G. Adjoint sensitivity analysis of the RELAP5 MOD3.2 two-fluid thermal-hydraulic code system—II: Applications. Nucl. Sci. Eng. 2000, 136, 85–121. [Google Scholar] [CrossRef]
- Bernauer, M.K.; Herzog, R. Implementation of an X-FEM solver for the Classical two-phase Stefan problem. SIAM J. Sci. Comput. 2011, 52, 271–293. [Google Scholar] [CrossRef]
- Bernauer, M.K.; Herzog, R. Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 2011, 33, 342–363. [Google Scholar] [CrossRef]
- Bernauer, M.K.; Herzog, R. Adjoint-based optimization of multi-phase flow through porous media—A review. Comput. Fluids 2011, 46, 40–51. [Google Scholar]
- Kataoka, I. Local instant formulation of two-phase flow. Int. J. Multiph. Flow 1986, 12, 745–758. [Google Scholar] [CrossRef]
- Gunzburger, M.D. Perspectives in Flow Control and Optimization; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
- Xiao, F.; Ii, S.; Chen, C. Revisit to the THINC Scheme: A Simple Algebraic VOF Algorithm. J. Comput. Phys. 2011, 230, 7086–7092. [Google Scholar] [CrossRef] [Green Version]
- Fikl, A. Adjoint-Based Optimization for Hyperbolic Balance Laws in the Presence of Discontinuities. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2016. [Google Scholar]
- Fikl, A.; Le Chenadec, V.; Sayadi, T.; Schmid, P. A comprehensive study of adjoint-based optimization of non-linear systems with application to Burgers’ equation. In Proceedings of the 46th AIAA Fluid Dynamics Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar]
- Giles, M.B. Discrete Adjoint Approximations with Shocks. In Hyperbolic Problems: Theory, Numerics, Applications; Hou, T.Y., Tadmor, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fikl, A.; Le Chenadec, V.; Sayadi, T. Control and Optimization of Interfacial Flows Using Adjoint-Based Techniques. Fluids 2020, 5, 156. https://doi.org/10.3390/fluids5030156
Fikl A, Le Chenadec V, Sayadi T. Control and Optimization of Interfacial Flows Using Adjoint-Based Techniques. Fluids. 2020; 5(3):156. https://doi.org/10.3390/fluids5030156
Chicago/Turabian StyleFikl, Alexandru, Vincent Le Chenadec, and Taraneh Sayadi. 2020. "Control and Optimization of Interfacial Flows Using Adjoint-Based Techniques" Fluids 5, no. 3: 156. https://doi.org/10.3390/fluids5030156
APA StyleFikl, A., Le Chenadec, V., & Sayadi, T. (2020). Control and Optimization of Interfacial Flows Using Adjoint-Based Techniques. Fluids, 5(3), 156. https://doi.org/10.3390/fluids5030156