Numerical Computations of Vortex Formation Length in Flow Past an Elliptical Cylinder
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Connor, J. Project Based Learning and Authenticity: An Instructor’s View. In Proceedings of the 7th First Year Engineering, Roanoke, VA, USA, 3–4 August 2015. [Google Scholar]
- Sahin, M.; Yorek, N. A comparison of problem-based learning and traditional lecture students expectations and course grades in an introductory physics classroom. Sci. Res. Essays 2009, 4, 753–762. [Google Scholar]
- Torp, L.; Sage, S. Problem as Possibilities, Problem Based Learning for K-16; Association for Supervision and Curriculum Development: Alexandria, VA, USA, 2002. [Google Scholar]
- Ahlfeldt, S.; Mehta, S.; Sellnow, T. Measurement and analysis of student engagement in university classes where varying levels of PBL methods of instruction are in use. High. Educ. Res. Dev. 2005, 24, 5–20. [Google Scholar] [CrossRef]
- Dahlgren, M.A. Portraits of PBL: Course objectives and students’ study strategies in computer engineering, psychology and physiotherapy. Instr. Sci. 2000, 28, 309–329. [Google Scholar] [CrossRef] [Green Version]
- Hake, R.R. Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. Am. J. Phys. 1998, 66, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Zyngier, D. Listening to teachers—Listening to students: Substantive conversations about resistance, empowerment and engagement. Teach. Teach. Theory Pract. 2007, 13, 327–347. [Google Scholar] [CrossRef]
- Bot, L.; Gossiaux, P.B.; Rauch, C.P.; Tabiou, S. Learning by doing: A teaching method for active learning in scientific graduate education. Eur. J. Eng. Educ. 2005, 30, 105–119. [Google Scholar] [CrossRef]
- Kwon, H.J. Use of comsol simulation for undergraduate fluid dynamics course. ASEE Comput. Educ. (CoED) J. 2013, 4, 63. [Google Scholar]
- Mokhtar, W. Project-Based Learning (PBL): An Effective Tool to Teach an Undergraduate CFD Course. In Proceedings of the 2011 ASEE Annual Conference & Exposition, Vancouver, BC, Canada, 26–29 June 2011. [Google Scholar]
- Mokhtar, W. Using Computational Fluid Dynamics to Introduce Critical Thinking and Creativity in an Undergraduate Engineering Course. Int. J. Learn. 2010, 17, 441–457. [Google Scholar] [CrossRef]
- Pawar, S.; San, O. CFD Julia: A learning module structuring an introductory course on computational fluid dynamics. Fluids 2019, 4, 159. [Google Scholar] [CrossRef] [Green Version]
- Vianna, R.S.; Cunha, A.M.; Azeredo, R.B.; Leiderman, R.; Pereira, A. Computing Effective Permeability of Porous Media with FEM and Micro-CT: An Educational Approach. Fluids 2020, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.H. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 1996, 28, 477–539. [Google Scholar] [CrossRef]
- Marris, A.W. A review on vortex streets, periodic wakes, and induced vibration phenomena. J. Basic Eng. 1964, 86, 185–193. [Google Scholar] [CrossRef]
- Williamson, C.H. Defining a universal and continuous Strouhal Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids (1958–1988) 1988, 31, 2742–2744. [Google Scholar] [CrossRef]
- Faruquee, Z.; Ting, D.S.; Fartaj, A.; Barron, R.M.; Carriveau, R. The effects of axis ratio on laminar fluid flow around an elliptical cylinder. Int. J. Heat Fluid Flow 2007, 28, 1178–1189. [Google Scholar] [CrossRef]
- Linke, W. New measurements on aerodynamics of cylinders particularly their friction resistance. Phys. Z. 1931, 32, 900. [Google Scholar]
- Rosenhead, L. Vortex systems in wakes. Adv. Appl. Mech. 1953, 3, 185–195. [Google Scholar]
- Berger, E.; Wille, R. Periodic flow phenomena. Annu. Rev. Fluid Mech. 1972, 4, 313–340. [Google Scholar] [CrossRef]
- Morkovin, M.V. Flow around circular cylinder a kaleidoscope of challenging fluid phenomena. In Proceedings of the ASME Symposium on Fully Separated Flows, Philadelphia, PA, USA, 18–20 May 1964; pp. 102–118. [Google Scholar]
- Oertel, H., Jr. Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 1990, 22, 539–562. [Google Scholar] [CrossRef]
- Zdravkovich, M.M. Flow around circular cylinders. Fundamentals 1997, 1, 566–571. [Google Scholar]
- Chung, B.; Cohrs, M.; Ernst, W.; Galdi, G.P.; Vaidya, A. Wake cylinder interactions of a hinged cylinder at low and intermediate Reynolds numbers. Arch. Appl. Mech. 2016, 86, 627–641. [Google Scholar] [CrossRef]
- Roshko, A. On the wake and drag of bluff bodies. J. Aeronaut. Sci. 2012, 22, 124–132. [Google Scholar] [CrossRef]
- Williamson, C.H.K.; Roshko, A. Measurements of base pressure in the wake of a cylinder at low Reynolds numbers. Z. Flugwiss. Weltraumforsch. 1990, 14, 38–46. [Google Scholar]
- Coutanceau, M.; Bouard, R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 1977, 79, 231–256. [Google Scholar] [CrossRef]
- Taneda, S. Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Jpn. 1956, 11, 302–307. [Google Scholar] [CrossRef]
- Schafer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R. Benchmark computations of laminar flow around a cylinder. In Flow Simulation with High-Performance Computers II; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1996; pp. 547–566. [Google Scholar]
- Allaire, R.; Guerron, P.; Nita, B.; Nolan, P.; Vaidya, A. On the equilibrium configurations of flexible fibers in a flow. Int. J. Non-Linear Mech. 2015, 69, 157–165. [Google Scholar] [CrossRef]
- Nolan, P. Numerical Study of Body Shape and Wing Flexibility in Fluid Structure Interaction. Master’s Thesis, Montclair State University, Montclair, NJ, USA, 2015. [Google Scholar]
- Vaidya, A. Teaching and Learning of Fluid Mechanics. Fluids 2020, 5, 49. [Google Scholar] [CrossRef] [Green Version]
Channel Height | Channel Length | Cylinder Diameter | Area of Cylinder | ||
---|---|---|---|---|---|
0.4 m | 2.2 m | 0.1 m | 0.00785 m2 | 0.4–1.4 | 10–100 |
Slope | 0.108 | 0.095 | 0.082 | 0.068 | 0.059 | 0.046 |
0.996 | 0.948 | 0.922 | 0.961 | 0.976 | 0.959 | |
Exponent | −0.024 | −0.023 | −0.020 | −0.018 | −0.034 | - |
0.953 | 0.953 | 0.951 | 0.995 | 0.986 | - |
10 | 20 | 30 | 40 | 50 | 60 | 70 | 84 | 88 | 92 | 96 | 100 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | 0.513 | 1 | 1.67 | 2.064 | 2.737 | 3.306 | 3.332 | 2.752 | 2.399 | 2.098 | 1.857 | 1.628 |
0.6 | 0.622 | 0.872 | 1.647 | 1.741 | 2.365 | 2.617 | 1.86 | 1.239 | 1.18 | 1.128 | 1.087 | 1.043 |
0.8 | 0.369 | 1.236 | 1.235 | 1.663 | 1.982 | 2.362 | 2.097 | 1.31 | 1.31 | 1.196 | 1.167 | 1.141 |
1 | 0.319 | 0.908 | 0.908 | 1.353 | 1.621 | 2.109 | 2.18 | 1.678 | 1.533 | 1.413 | 1.343 | 1.267 |
1.2 | 0.251 | 0.515 | 0.953 | 1.244 | 1.604 | 1.604 | 2.115 | 2.351 | 2.051 | 1.783 | 1.485 | 1.389 |
1.4 | 0.363 | 0.532 | 0.961 | 0.961 | 1.181 | 1.419 | 1.677 | 1.879 | 1.894 | 2.068 | 2.171 | 1.923 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlson, M.; Nita, B.G.; Vaidya, A. Numerical Computations of Vortex Formation Length in Flow Past an Elliptical Cylinder. Fluids 2020, 5, 157. https://doi.org/10.3390/fluids5030157
Karlson M, Nita BG, Vaidya A. Numerical Computations of Vortex Formation Length in Flow Past an Elliptical Cylinder. Fluids. 2020; 5(3):157. https://doi.org/10.3390/fluids5030157
Chicago/Turabian StyleKarlson, Matthew, Bogdan G. Nita, and Ashwin Vaidya. 2020. "Numerical Computations of Vortex Formation Length in Flow Past an Elliptical Cylinder" Fluids 5, no. 3: 157. https://doi.org/10.3390/fluids5030157
APA StyleKarlson, M., Nita, B. G., & Vaidya, A. (2020). Numerical Computations of Vortex Formation Length in Flow Past an Elliptical Cylinder. Fluids, 5(3), 157. https://doi.org/10.3390/fluids5030157