Influence of Wind Buffers on the Aero-Thermal Performance of Skygardens
Abstract
:1. Introduction and Literature Review
Literature Gap and Novelty
2. Method
2.1. CFD Governing Equation
2.2. Computational Geometry and Domain
2.3. Boundary Conditions
2.4. Mesh Design
2.5. Outdoor Comfort Criteria
3. Method Verification and Validation
3.1. Verification of the Base High-Rise Building
3.2. Validation of Vegetation and Trees
4. Results and Discussion
4.1. Impact of Buffer Elements on Wind Speed
4.2. Wind Comfort within the Skygarden
4.3. Impact of Buffer Elements on Air Temperature
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heat Island Impacts. EPA United States Environmental Protection Agency. Available online: https://www.epa.gov/heat-islands/heat-island-impacts (accessed on 23 June 2020).
- World Energy Outlook 2018. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 23 June 2020).
- Krefis, A.C.; Augustin, M.; Schlünzen, K.H.; Oßenbrügge, J.; Augustin, J. How Does the Urban Environment Affect Health and Well-Being? A Systematic Review. Urban Sci. 2018, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Cities in Numbers: How Patterns of Urban Growth Change the World. Available online: https://www.theguardian.com/cities/2015/nov/23/cities-in-numbers-how-patterns-of-urban-growth-change-the-world (accessed on 23 June 2020).
- High Demand for High-Rise: Where will the City Put Its New Skyscrapers? Available online: https://www.architectsjournal.co.uk/news/high-demand-for-high-rise-where-will-the-city-put-its-new-skyscrapers/8691245.article (accessed on 23 June 2020).
- Akristiniy, V.A.; Boriskina, Y.I. Vertical cities-the new form of high-rise construction evolution. In E3S Web of Conferences; 2018; Volume 33. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y.; Chan, M.W.H. Urban greenspace delivery in Hong Kong: Spatial-institutional limitations and solutions. Urban For. Urban Green. 2016, 18, 65–85. [Google Scholar] [CrossRef]
- Lo, A.; Byrne, J.A.; Jim, C.Y. How climate change perception is reshaping attitudes towards the functional benefits of urban trees and green space: Lessons from Hong Kong. Urban For. Urban Green. 2016, 23, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Moss, J.L.; Doick, K.J.; Smith, S.; Shahrestani, M. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban For. Urban Green. 2019, 37, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Ow, L.F.; Ghosh, S.; Yusof, M.L.M. Growth of Samanea saman: Estimated cooling potential of this tree in an urban environment. Urban For. Urban Green. 2019, 41, 264–271. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments-A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Wellmann, T.; Schug, F.; Haase, D.; Pflugmacher, D.; van der Linden, S. Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series. Landsc. Urban Plan. 2020, 202, 103857. [Google Scholar] [CrossRef]
- Malys, L.; Musy, M.; Inard, C. Direct and Indirect Impacts of Vegetation on Building Comfort: A Comparative Study of Lawns, Green Walls and Green Roofs. Energies 2016, 9, 32. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Ihara, T.; Gomi, K.; Fujita, T. Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO2 Emissions. Sustainability 2019, 11, 2055. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.G.M.; Silva, C.; Valadas, A.S.; Silva, M. Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate. Water 2019, 11, 2016. [Google Scholar] [CrossRef] [Green Version]
- Kang, G.; Kim, J.-J.; Kim, D.-J.; Choi, W.; Park, S.-J. Development of a computational fluid dynamics model with tree drag parameterizations: Application to pedestrian wind comfort in an urban area. Build. Environ. 2017, 124, 209–218. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, T.-P.; Hwang, R.-L. Thermal comfort for urban parks in subtropics: Understanding visitor’s perceptions, behavior and attendance. Adv. Meteorol. 2013, 2013. [Google Scholar] [CrossRef]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Ochodo, C.; Ndetei, D.M.; Moturi, W.N.; Otieno, J.O. External Built Residential Environment Characteristics that Affect Mental Health of Adults. J. Urban Health 2014, 91, 908–927. [Google Scholar] [CrossRef] [Green Version]
- Montazeri, H.; Blocken, B.; Janssen, W.D.; van Hooff, T. CFD analysis of wind comfort on high-rise building balconies: Validation and application. In Proceedings of the 7th International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7), Shanghai, China, 2–6 September 2012; Volume 2012, pp. 1–10. [Google Scholar]
- Tian, Y.; Jim, C.Y. Factors influencing the spatial pattern of sky gardens in the compact city of Hong Kong. Landsc. Urban Plan. 2011, 101, 299–309. [Google Scholar] [CrossRef]
- Giacomello, E.; Valagussa, M. Vertical Greenery: Evaluating the High-Rise Vegetation of the Bosco Verticale, Milan; Council on Tall Buildings and Urban Habitat: Chicago, IL, USA, 2015; Available online: https://store.ctbuh.org/index.php?controller=attachment&id_attachment=32 (accessed on 23 June 2020).
- Terrapin Bright Green. ParkRoyal on Pickering Hotel and Spa. 2017. Available online: https://www.terrapinbrightgreen.com/wp-content/uploads/2015/11/Parkroyal_Case-Study.pdf (accessed on 23 June 2020).
- Pomeroy, J. The Skycourt and Skygarden, Greening the Urban Habitat, 1st ed.; Routledge: Abingdon, UK, 2014; ISBN 978-0-415-63698-8. [Google Scholar]
- WHO—World Health Organization. Health and Sustainable Development: Urban Green Spaces 2020. Available online: https://www.who.int/sustainable-development/cities/health-risks/urban-green-space/en// (accessed on 23 June 2020).
- Tian, Y.; Jim, C.Y.; Tao, Y. Challenges and Strategies for Greening the Compact City of Hong Kong. J. Urban Plan. Dev. 2012, 138, 101–109. [Google Scholar] [CrossRef]
- Tien, P.W.; Calautit, J.K. Numerical analysis of the wind and thermal comfort in courtyards “skycourts” in high rise buildings. J. Build. Eng. 2019, 24, 100735. [Google Scholar] [CrossRef]
- Mohammadi, M.; Calautit, J.K. Numerical investigation of the wind and thermal conditions in sky gardens in high-rise buildings. Energies 2019, 12, 1380. [Google Scholar] [CrossRef] [Green Version]
- Melbourne, W.H. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. J. Wind Eng. Ind. Aerodyn. 1980, 6, 73–88. [Google Scholar] [CrossRef]
- Kichah, A.; Bournet, P.-E.; Migeon, C.; Boulard, T. Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse. Biosyst. Eng. 2012, 112, 22–34. [Google Scholar] [CrossRef]
- Gromke, C.; Blocken, B.; Janssen, W.; Merema, B.; van Hooff, T.; Timmermans, H. CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Build. Environ. 2015, 83, 11–26. [Google Scholar] [CrossRef]
- Rahman, M.A.; Smith, J.G.; Stringer, P.; Ennos, A.R. Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban. For. Urban. Green. 2011, 10, 185–192. [Google Scholar] [CrossRef]
- Gromke, C.; Ruck, B. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions. Bound. Layer Meteorol. 2012, 144, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Bitog, J.P.; Lee, I.-B.; Hwang, H.-S.; Shin, M.-H.; Hong, S.-W.; Seo, I.-H.; Mostafa, E.; Pang, Z. A wind tunnel study on aerodynamic porosity and windbreak drag. For. Sci. Technol. 2011, 7, 8–16. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Murakami, S.; Sawaki, S. Comparison of various revised k-ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. J. Wind Eng. Ind. Aerodyn. 2008, 96, 389–411. [Google Scholar] [CrossRef]
- Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 2016, 139, 75–86. [Google Scholar] [CrossRef]
- British Standards Institution. BS 6180:2011 Barriers in and about Buildings-Code of Practice; British Standards Institution: London, UK, 2011; p. 46. [Google Scholar]
- Li, X.B.; Lu, Q.C.; Lu, S.J.; He, H.D.; Peng, Z.R.; Gao, Y.; Wang, Z.Y. The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban. For. Urban. Green. 2016, 17, 80–91. [Google Scholar] [CrossRef]
- Vos, P.E.J.; Maiheu, B.; Vankerkom, J.; Janssen, S. Improving local air quality in cities: To tree or not to tree? Environ. Pollut. 2013, 183, 113–122. [Google Scholar] [CrossRef]
- Wania, A.; Bruse, M.; Blond, N.; Weber, C. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J. Environ. Manage. 2012, 94, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Morakinyo, T.E.; Lam, Y.F. Simulation study of dispersion and removal of particulate matter from traffic by road-side vegetation barrier. Environ. Sci. Pollut. Res. 2016, 23, 6709–6722. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, A.; Morvan, H.P.; Colls, J.J. Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols. J. Aerosol. Sci. 2006, 37, 990–1015. [Google Scholar] [CrossRef]
- Tiwary, A.; Reff, A.; Colls, J.J. Collection of ambient particulate matter by porous vegetation barriers: Sampling and characterization methods. J. Aerosol. Sci. 2008, 39, 40–47. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F.; Hao, S. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement. J. Environ. Manag. 2016, 182, 595–605. [Google Scholar] [CrossRef]
- Al-Dabbous, A.N.; Kumar, P. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos. Environ. 2014, 90, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.Y.; Hagler, G.; Baldauf, R.; Isakov, V.; Lin, H.Y.; Khlystov, A. The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations. Sci. Total Environ. 2016, 553, 372–379. [Google Scholar] [CrossRef]
- Hagler, G.S.; Lin, M.Y.; Khlystov, A.; Baldauf, R.W.; Isakov, V.; Faircloth, J.; Jackson, L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 2012, 419, 7–15. [Google Scholar] [CrossRef]
- Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Zhang, K.M. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927. [Google Scholar] [CrossRef]
- Franke, J. Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment. In Proceedings of the Fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, Japan, 16–19 July 2006. [Google Scholar]
- Dagnew, A.K.; Bitsuamalk, G.T.; Merrick, R. Computational evaluation of wind pressures on tall buildings. In Proceedings of the 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico, 20–26 June 2009. [Google Scholar]
- Huang, S.; Li, Q.S.; Xu, S. Numerical evaluation of wind effects on a tall steel building by CFD. J. Constr. Steel. Res. 2007, 63, 612–627. [Google Scholar] [CrossRef]
- Lawson, T.V. The wind content of the built environment. J. Wind Eng. Ind. Aerodyn. 1978, 3, 93–105. [Google Scholar] [CrossRef]
- Braun, A.L.; Awruch, A.M. Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation. Comput. Struct. 2009, 87, 564–581. [Google Scholar] [CrossRef]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agric. For. Meteorol. 2018, 248, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.J.; Norris, S.E. Appropriate boundary conditions for computational wind engineering models revisited. J. Wind Eng. Ind. Aerodyn. 2011, 99, 257–266. [Google Scholar] [CrossRef]
Type | Dimension | Reference | |
---|---|---|---|
Height (m) | Width (m) | ||
Railing | 1.2 m | - | [22] |
1.1 m (minimum) | - | [39] | |
~2 m | - | Typical skygarden baluster height (e.g., 20 Fenchurch Street, Marina Bay Sands, etc.) | |
Hedge | 1.5 m, 2.5 m | 1.5 m | [38] |
0.5~4 m | 1.5 m | [40] | |
1~4 m | 1 m | [41] | |
1.5 m | - | [42] | |
Trees (Small) | 1.5~4 m | 1~7.5 m | [43] |
1.7 m~2.4 m | 1.6~3.2 m | [44] | |
2.2 m | 1.6 m | [45] | |
2~4 m | 1~2 m | [46] | |
Trees (Large) | 3.4 m | 2.2 m | [47] |
4~8 m | 2~6 m | [48] | |
6.1–7.2 m | 3.6–4.5 m | [49] | |
6 m, 9 m | 6, 12, 18 m | [50] |
Configuration | Element Type | Element Width (m) | Element Height (m) | Center-to-Center Tree Distance (m) | Blockage Ratio |
---|---|---|---|---|---|
a1 | Railing | 0.050 | 1.5 | - | 13% |
a2 | Railing | 0.050 | 2.0 | - | 17% |
b1 | Hedge | 1.5 | 1.5 | - | 13% |
b2 | Hedge | 1.5 | 2.0 | - | 17% |
c1 | Trees | 2.5 | 2.5 | 2.3 | 16% |
c2 | Trees | 4.5 | 5.0 | 4.6 | 33% |
Threshold of Wind Speed | Quality Class | Original Description | Reference Activity |
---|---|---|---|
U > 1.8 m/s | A | Covered area | Sitting long |
U > 3.6 m/s | B | Pedestrians standing around | Sitting short |
U > 5.3 m/s | C | Pedestrian walkthrough | Strolling |
U > 7.6 m/s | D | Roads and car parks | Walking fast |
U > 15 m/s | E | Dangerous | Unacceptable |
Mesh Config. | Mesh Settings | Number of | |
---|---|---|---|
Building Vicinity Sizing | Nodes | Elements | |
A | 0.25 m | 667,228 | 2,603,555 |
B | 0.2 m | 552,357 | 2,466,524 |
C | 0.1 m | 1,049,698 | 3,029,468 |
D | 0.1 m | 697,824 | 2,714,337 |
Case | Base | A1 | A2 | B1 | B2 | C1 | C2 |
---|---|---|---|---|---|---|---|
Average wind speeds (m/s) | 11.99 | 4.07 | 2.24 | 4.20 | 2.91 | 3.93 | 4.00 |
Case | Base | A1 | A2 | B1 | B2 | C1 | C2 |
---|---|---|---|---|---|---|---|
Percentage area of skygarden with Quality Class of C or below | 3.68% | 71.84% | 98.60% | 69.02% | 96.01% | 93.10% | 91.09% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, M.; Tien, P.W.; Kaiser Calautit, J. Influence of Wind Buffers on the Aero-Thermal Performance of Skygardens. Fluids 2020, 5, 160. https://doi.org/10.3390/fluids5030160
Mohammadi M, Tien PW, Kaiser Calautit J. Influence of Wind Buffers on the Aero-Thermal Performance of Skygardens. Fluids. 2020; 5(3):160. https://doi.org/10.3390/fluids5030160
Chicago/Turabian StyleMohammadi, Murtaza, Paige Wenbin Tien, and John Kaiser Calautit. 2020. "Influence of Wind Buffers on the Aero-Thermal Performance of Skygardens" Fluids 5, no. 3: 160. https://doi.org/10.3390/fluids5030160
APA StyleMohammadi, M., Tien, P. W., & Kaiser Calautit, J. (2020). Influence of Wind Buffers on the Aero-Thermal Performance of Skygardens. Fluids, 5(3), 160. https://doi.org/10.3390/fluids5030160