A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids
Abstract
:1. Introduction
2. Preliminaries
3. Fokker–Planck Equation
3.1. Fokker–Planck Equation in the Case of Velocity Field with Nonzero Divergence
3.2. Boundary Condition in the Configurational Space
3.3. Evolution Equation for Polymer Number Density
3.4. Force Potential
3.5. Stationary Solution of the Fokker–Planck Equation in a Spatially Homogeneous State at a Given Temperature
4. Helmholtz Free Energy
5. Constitutive Relations
5.1. Evolution Equation for the Specific Entropy
5.2. Entropy Production and Constitutive Relations
5.3. Temperature Evolution Equation
5.4. Summary
6. Stability
6.1. Outline of the Construction of the Lyapunov Like Functional
6.2. Polymeric Part
6.3. Solvent Part: Noble–Abel Stiffened-Gas Equation of State
6.4. Summary
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kramers, H.A. The behavior of macromolecules in inhomogeneous flow. J. Chem. Phys. 1946, 14, 415–424. [Google Scholar] [CrossRef]
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids, 2nd ed.; Kinetic Theory; John Wiley & Sons: Hoboken, NJ, USA, 1987; Volume 2. [Google Scholar]
- Beris, A.N.; Edwards, B.J. Thermodynamics of Flowing Systems: With Internal Microstructure; Number 36 in Oxford Engineering Science Series; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Öttinger, H.C. Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms; Springer: Berlin, Germay, 1996. [Google Scholar]
- Huilgol, R.R.; Phan-Thien, N. Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques; Rheology Series; Elsevier: Amsterdam, The Netherlands, 1997; Volume 6. [Google Scholar] [CrossRef]
- Dressler, M.; Edwards, B.J.; Öttinger, H.C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 1999, 38, 117–136. [Google Scholar] [CrossRef]
- Öttinger, H.C. Beyond Equilibrium Thermodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kröger, M. Models for Polymeric and Anisotropic Liquids; Lecture Notes in Physics; Springer: Berlin, Germany, 2005; Volume 675. [Google Scholar]
- Lozinski, A.; Owens, R.G.; Phillips, T.N. The Langevin and Fokker–Planck equations in polymer rheology. In Numerical Methods for Non-Newtonian Fluids; Glowinski, R., Xu, J., Eds.; Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2011; Volume 16, pp. 211–303. [Google Scholar] [CrossRef]
- Le Bris, C.; Lelièvre, T. Multiscale modelling of complex fluids: A mathematical initiation. In Multiscale Modeling and Simulation in Science; Engquist, B., Lötstedt, P., Runborg, O., Eds.; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2009; Volume 66, pp. 49–137. [Google Scholar] [CrossRef] [Green Version]
- Lozinski, A.; Chauvière, C. A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 2003, 189, 607–625. [Google Scholar] [CrossRef]
- Knezevic, D.J.; Süli, E. A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model. M2AN Math. Model. Numer. Anal. 2009, 43, 1117–1156. [Google Scholar] [CrossRef] [Green Version]
- Mizerová, H.; She, B. A conservative scheme for the Fokker-Planck equation with applications to viscoelastic polymeric fluids. J. Comput. Phys. 2018, 374, 941–953. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; de Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Peters, G.W.M.; Baaijens, F.P.T. Modelling of non-isothermal viscoelastic flows. J. Non-Newton. Fluid Mech. 1997, 68, 205–224. [Google Scholar] [CrossRef] [Green Version]
- Wapperom, P.; Hulsen, M.A. Thermodynamics of viscoelastic fluids: The temperature equation. J. Rheol. 1998, 42, 999–1019. [Google Scholar] [CrossRef] [Green Version]
- Hron, J.; Miloš, V.; Průša, V.; Souček, O.; Tůma, K. On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 2017, 95, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Öttinger, H.C.; Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 1997, 56, 6633–6655. [Google Scholar] [CrossRef]
- Coleman, B.D. On the stability of equilibrium states of general fluids. Arch. Ration. Mech. Anal. 1970, 36, 1–32. [Google Scholar] [CrossRef]
- Bulíček, M.; Málek, J.; Průša, V. Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy 2019, 21, 704. [Google Scholar] [CrossRef] [Green Version]
- Málek, J.; Průša, V. Derivation of equations for continuum mechanics and thermodynamics of fluids. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids; Giga, Y., Novotný, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–72. [Google Scholar] [CrossRef]
- Müller, I. Thermodynamics; Interaction of Mechanics and Mathematics; Pitman: London, UK, 1985. [Google Scholar]
- Gurtin, M.E.; Fried, E.; Anand, L. The Mechanics and Thermodynamics of Continua; Cambridge University Press: Cambridge, UK, 2010; p. xxii+694. [Google Scholar]
- Rajagopal, K.R.; Tao, L. Mechanics of Mixtures; Series on Advances in Mathematics for Applied Sciences; World Scientific Publishing Co. Inc.: River Edge, NJ, USA, 1995; Volume 35, p. xii+195. [Google Scholar]
- Hutter, K.; Jöhnk, K. Continuum Methods of Physical Modeling; Springer: Berlin, Germany, 2004. [Google Scholar]
- Souček, O.; Průša, V.; Málek, J.; Rajagopal, K.R. On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Acta Mech. 2014, 225, 3157–3186. [Google Scholar] [CrossRef]
- Vinogradov, G.V.; Malkin, A.Y. Rheology of Polymers: Viscoelasticity and Flow of Polymers; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Larson, R.G. Constitutive Equations for Polymer Melts and Solutions; Butterworths Series in Chemical Engineering; Butterworth-Heinemann: Oxford, UK, 1988. [Google Scholar] [CrossRef]
- Leonov, A.I.; Prokunin, A.N. Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Tanner, R.; Walters, K. Rheology: An Historical Perspective; Rheology Series; Elsevier: Amsterdam, The Netherlands, 1998; Volume 7. [Google Scholar]
- Barrett, J.W.; Süli, E. Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity. J. Diff. Equ. 2012, 253, 3610–3677. [Google Scholar] [CrossRef] [Green Version]
- Degond, P.; Liu, H. Kinetic models for polymers with inertial effects. Netw. Heterog. Media 2009, 4, 625–647. [Google Scholar] [CrossRef]
- Barrett, J.W.; Süli, E. Existence of global weak solutions to compressible isentropic finitely extensible bead-spring chain models for dilute polymers. Math. Model. Methods Appl. Sci. 2016, 26, 469–568. [Google Scholar] [CrossRef] [Green Version]
- Feireisl, E.; Lu, Y.; Süli, E. Dissipative weak solutions to compressible Navier–Stokes–Fokker–Planck systems with variable viscosity coefficients. J. Math. Anal. Appl. 2016, 443, 322–351. [Google Scholar] [CrossRef] [Green Version]
- Warner, H.R. Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam. 1972, 11, 379–387. [Google Scholar] [CrossRef]
- Ericksen, J.L. Introduction to the Thermodynamics of Solids, revised ed.; Applied Mathematical Sciences; Springer: New York, NY, USA, 1998; Volume 131, p. xii+189. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 2000, 88, 207–227. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. Int. J. Non-Linear Mech. 2015, 76, 42–47. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations. Fluids 2018, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Málek, J.; Průša, V.; Skřivan, T.; Süli, E. Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 2018, 30, 023101. [Google Scholar] [CrossRef]
- Dostalík, M.; Průša, V.; Skřivan, T. On diffusive variants of some classical viscoelastic rate-type models. AIP Conf. Proc. 2019, 2107, 020002. [Google Scholar] [CrossRef]
- Souček, O.; Orava, V.; Málek, J.; Bothe, D. A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption. Int. J. Eng. Sci. 2019, 138, 82–117. [Google Scholar] [CrossRef]
- Hatzikiriakos, S.G. Wall slip of molten polymers. Prog. Polym. Sci. 2012, 37, 624–643. [Google Scholar] [CrossRef]
- Coleman, B.D.; Greenberg, J.M. Thermodynamics and the stability of fluid motion. Arch. Ration. Mech. Anal. 1967, 25, 321–341. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and the energy criterion for stability. Arch. Ration. Mech. Anal. 1973, 52, 93–103. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and stability. Arch. Ration. Mech. Anal. 1975, 59, 63–96. [Google Scholar] [CrossRef]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Le Métayer, O.; Saurel, R. The Noble–Abel stiffened-gas equation of state. Phys. Fluids 2016, 28, 046102. [Google Scholar] [CrossRef] [Green Version]
- Chiapolino, A.; Saurel, R. Extended Noble–Abel stiffened-gas equation of state for sub-and-supercritical liquid-gas systems far from the critical point. Fluids 2018, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Dostalík, M.; Průša, V.; Tůma, K. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type fluid. Entropy 2019, 21, 1219. [Google Scholar] [CrossRef] [Green Version]
- Dostalík, M.; Průša, V.; Stein, J. Unconditional finite amplitude stability of a viscoelastic fluid in a mechanically isolated vessel with spatially non-uniform wall temperature. Math. Comput. Simul. 2020. [Google Scholar] [CrossRef]
- El-Kareh, A.W.; Leal, L.G. Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J. Non-Newton. Fluid Mech. 1989, 33, 257–287. [Google Scholar] [CrossRef]
- Bhave, A.V.; Armstrong, R.C.; Brown, R.A. Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions. J. Chem. Phys. 1991, 95, 2988–3000. [Google Scholar] [CrossRef]
- Schieber, J.D. Generalized Brownian configuration fields for Fokker–Planck equations including center-of-mass diffusion. J. Non-Newton. Fluid Mech. 2006, 135, 179–181. [Google Scholar] [CrossRef]
- Barrett, J.W.; Süli, E. Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 2007, 6, 506–546. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.W.; Süli, E. Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains. Math. Model. Methods Appl. Sci. 2011, 21, 1211–1289. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.W.; Süli, E. Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type models. Math. Model. Methods Appl. Sci. 2012, 22, 1150024. [Google Scholar] [CrossRef] [Green Version]
- Bulíček, M.; Málek, J.; Průša, V.; Süli, E. A PDE-analysis for a class of thermodynamically compatible viscoelastic rate type fluids with stress diffusion. In Mathematical Analysis in Fluid Mechanics: Selected Recent Results; Danchin, R., Farwig, R., Neustupa, J., Penel, P., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2018; Volume 710, pp. 25–53. [Google Scholar] [CrossRef] [Green Version]
- Bulíček, M.; Feireisl, E.; Málek, J. On a class of compressible viscoelastic rate-type fluids with stress-diffusion. Nonlinearity 2019, 32, 4665. [Google Scholar] [CrossRef] [Green Version]
- Bathory, M.; Bulíček, M.; Málek, J. Large Data Existence Theory for Three-Dimensional Unsteady Flows of Rate-Type Viscoelastic Fluids with Stress Diffusion. arXiv 2020, arXiv:2002.11224. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotný, A. Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 2012, 204, 683–706. [Google Scholar] [CrossRef] [Green Version]
- Feireisl, E.; Jin, B.J.; Novotný, A. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 2012, 14, 717–730. [Google Scholar] [CrossRef]
- Feireisl, E.; Pražák, D. Asymptotic Behavior of Dynamical Systems in Fluid Mechanics; AIMS Series on Applied Mathematics; American Institute of Mathematical Sciences (AIMS): Springfield, MO, USA, 2010; Volume 4, p. xii+298. [Google Scholar]
- Jourdain, B.; Le Bris, C.; Lelièvre, T.; Otto, F. Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 2006, 181, 97–148. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dostalík, M.; Málek, J.; Průša, V.; Süli, E. A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids. Fluids 2020, 5, 133. https://doi.org/10.3390/fluids5030133
Dostalík M, Málek J, Průša V, Süli E. A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids. Fluids. 2020; 5(3):133. https://doi.org/10.3390/fluids5030133
Chicago/Turabian StyleDostalík, Mark, Josef Málek, Vít Průša, and Endre Süli. 2020. "A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids" Fluids 5, no. 3: 133. https://doi.org/10.3390/fluids5030133
APA StyleDostalík, M., Málek, J., Průša, V., & Süli, E. (2020). A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids. Fluids, 5(3), 133. https://doi.org/10.3390/fluids5030133