Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid
Abstract
:1. Introduction
2. Experimentation
2.1. Preparation of Nanofluid
2.2. Measurement of Thermophysical and Electrical Properties
2.2.1. Measurement of Viscosity
2.2.2. Measurement of Surface Tension
2.2.3. Measurement of Density
2.2.4. Measurement of Oil Resistivity
3. Results and Discussions
3.1. Thermophysical and Electrical Properties of Nanofluid
3.1.1. Effect of Temperature on Viscosity
3.1.2. Effect of Temperature on Surface Tension
3.1.3. Effect of Temperature on Density
3.1.4. Effect of Temperature on Specific Resistivity of Working Fluid
3.1.5. Effect of Temperature on Electrical Conductivity
3.1.6. Effect of Temperature on Dielectric Dissipation Factor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miao, J.; Dong, M.; Ren, M.; Wu, X.; Shen, L.; Wang, H. Effect of nanoparticle polarization on relative permittivity of transformer oil-based nanofluids. J. Appl. Phys. 2013, 113, 204103. [Google Scholar] [CrossRef]
- Rajňak, M.; Kurimský, J.; Cimbala, R.; Čonka, Z.; Bartko, P.; Šuga, M.; Paulovičová, K.; Tóthová, J.; Karpets, M.; Kopčanský, P.; et al. Statistical analysis of AC dielectric breakdown in transformer oil-based magnetic nanofluids. J. Mol. Liq. 2020, 309, 113243. [Google Scholar] [CrossRef]
- Samy, A.M.; Ibrahim, M.E.; Abd-Elhady, A.M.; Izzularab, M.A. On electric field distortion for breakdown mechanism of nanofilled transformer oil. Int. J. Electr. Power Energy Syst. 2020, 117, 105632. [Google Scholar] [CrossRef]
- Raof, N.A.; Yunus, R.; Rashid, U.; Azis, N.; Yaakub, Z. Effect of molecular structure on oxidative degradation of ester based transformer oil. Tribol. Int. 2019, 140, 105852. [Google Scholar] [CrossRef]
- Salama, M.M.; Mansour, D.-E.A.; Daghrah, M.; Abdelkasoud, S.M.; Abbas, A.A. Thermal performance of transformers filled with environmentally friendly oils under various loading conditions. Int. J. Electr. Power Energy Syst. 2020, 118, 105743. [Google Scholar] [CrossRef]
- Nimmagadda, R.; Reuven, R.; Asirvatham, L.G.; Wongwises, S. Thermal Management of Electronic Devices Using Gold and Carbon Nanofluids in a Lid-Driven Square Cavity under the Effect of Variety of Magnetic Fields. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 1–13. [Google Scholar] [CrossRef]
- Returi, M.C.; Konijeti, R.; Dasore, A. Heat transfer enhancement using hybrid nanofluids in spiral plate heat exchangers. Heat Transf.-Asian Res. 2019, 48, 3128–3143. [Google Scholar] [CrossRef]
- Konda, J.R.; N.P., M.R.; Konijeti, R.; Dasore, A. Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Multidiscip. Model. Mater. Struct. 2019, 15, 452–472. [Google Scholar] [CrossRef]
- Manova, S.; Asirvatham, L.G.; Nimmagadda, R.; Bose, J.R.; Wongwises, S. Cooling of high heat flux electronic devices using ultra-thin multiport minichannel thermosyphon. Appl. Therm. Eng. 2020, 169, 114669. [Google Scholar] [CrossRef]
- Manova, S.; Asirvatham, L.G.; Nimmagadda, R.; Bose, J.R.; Wongwises, S. Feasibility of using multiport minichannel as thermosyphon for cooling of miniaturized electronic devices. Heat Transf. 2020, 1–23. [Google Scholar] [CrossRef]
- Ramezanizadeh, M.; Hossein, M.; Alhuyi, M. A review on the utilized machine learning approaches for modeling the dynamic viscosity of nano fluids. Renew. Sustain. Energy Rev. 2019, 114, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J. Magn. Magn. Mater. 2020, 512, 166998. [Google Scholar] [CrossRef]
- Estellé, P.; Cabaleiro, D.; Gawel, Ż.; Lugo, L.; Murshed, S.M.S. Current trends in surface tension and wetting behavior of nano fluids. Renew. Sustain. Energy Rev. 2018, 94, 931–944. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Physica C: Predicting doped MgB 2 superconductor critical temperature from lattice parameters using Gaussian process regression. Phys. C Supercond. Its Appl. 2020, 573, 1353633. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Predicting As x Se 1 − x Glass Transition Onset Temperature. Sci. Bulletin. 2020, 64, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, X. Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys. Lett. A 2020, 384, 30–32. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Taylor, R.A.; Abu-Nada, E.; Rashidi, S.; et al. Recent advances in modeling and simulation of nanofluid flows—Part II: Applications. Phys. Rep. 2019, 791, 1–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv. 2020, 10, 20646–20653. [Google Scholar] [CrossRef]
- Baghban, A.; Kahani, M.; Alhuyi, M.; Hossein, M. Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT / water nanofluid flows through coils. Int. J. Heat Mass Transf. 2019, 128, 825–835. [Google Scholar] [CrossRef]
- Zeng, Y.-X.; Zhong, X.-W.; Liu, Z.-Q.; Chen, S.; Li, N. Preparation and Enhancement of Thermal Conductivity of Heat Transfer Oil-Based MoS2 Nanofluids. J. Nanomater. 2013, 2013, 1–6. [Google Scholar]
- Li, D.; Xie, W.; Fang, W. Preparation and properties of copper-oil-based nanofluids. Nanoscale Res. Lett. 2011, 6, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, M.; Lv, Y.; Zhou, Y.; Ma, K.; Wang, W.; Li, C.; Wang, Q. Use of vegetable oils as transformer oils—A review. Renew. Sustain. Energy Rev. 2015, 52, 308–324. [Google Scholar] [CrossRef]
- Cao, Y.; Irwin, P.C.; Younsi, K. The future of nano dielectrics in the electrical power industry. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 797–807. [Google Scholar]
- Nguyen, C.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Mintsa, H.A. Viscosity data for Al2O3–water nanofluid—Hysteresis: Is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci. 2008, 47, 103–111. [Google Scholar] [CrossRef]
- Hanai, M.; Hosomi, S.; Kojima, H.; Hayakawa, N.; Okubo, H. Dependence of TiO2 and ZnO nanoparticle concentration on electrical insulation characteristics of insulating oil. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP ’13), Nagoya, Japan, 20–23 October 2013; pp. 780–783. [Google Scholar]
- Karthik, R.; Raja, T.S.R.; Madavan, R. Enhancement of Critical Characteristics of Transformer Oil Using Nanomaterials. Arab. J. Sci. Eng. 2012, 38, 2725–2733. [Google Scholar] [CrossRef]
- Beheshti, A.; Shanbedi, M.; Heris, S.Z. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J. Therm. Anal. Calorim. 2014, 118, 1451–1460. [Google Scholar] [CrossRef]
- Pugazhendhi, S.C. Experimental evaluation on dielectric and thermal characteristics of nano filler added transformer oil. In Proceedings of the 2012 International Conference on High Voltage Engineering and Application, Shanghai, China, 17–20 September 2012; pp. 207–210. [Google Scholar]
- Botha, S.S.; Ndungu, P.G.; Bladergroen, B.J. Physicochemical Properties of Oil-Based Nanofluids Containing Hybrid Structures of Silver Nanoparticles Supported on Silica. Ind. Eng. Chem. Res. 2011, 50, 3071–3077. [Google Scholar] [CrossRef]
- Asadi, A.; Aberoumand, S.; Moradikazerouni, A.; Pourfattah, F.; Żyła, G.; Estellé, P.; Mahian, O.; Wongwises, S. Nguyen, H.M.; Arabkoohsar, A. Recent advances in preparation methods and thermophysical properties of oil-based nano fl uids: A state-of-the-art review. Powder Technol. 2019, 352, 209–226. [Google Scholar] [CrossRef]
- Benos, L.; Sarris, I. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int. J. Heat Mass Transf. 2019, 130, 862–873. [Google Scholar] [CrossRef]
- Benos, L.T.; Karvelas, E.G.; Sarris, I.E. Crucial effect of aggregations in CNT-water nano fluid magnetohydrodynamic natural convection. Therm. Sci. Eng. Prog. 2019, 11, 263–271. [Google Scholar] [CrossRef]
- Bashirnezhad, K.; Safaei, S.; Reza, M.; Marjan, G.; Mahidzal, D. Viscosity of nanofluids: A review of recent experimental studies. Int. Commun. Heat Mass Transf. 2016, 73, 114–123. [Google Scholar] [CrossRef]
- Nimmagadda, R. Buoyancy-driven heat transfer performance of pure and hybrid nanofluids in minienclosure. J. Thermophys. Heat Transf. 2018, 32, 570–579. [Google Scholar] [CrossRef]
- Konakanchi, H.; Vajjha, R.; Misra, D.; Das, D. Electrical conductivity measurements of nanofluids and development of new correlations. J. Nanosci. Nanotechnol. 2011, 11, 6788–6795. [Google Scholar] [CrossRef]
- Ahammed, N.; Asirvatham, L.G.; Wongwises, S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J. Therm. Anal. Calorim. 2015, 123, 1399–1409. [Google Scholar] [CrossRef]
- Godson, L.; Raja, B.; Lal, D.M.; Wongwises, S. Enhancement of heat transfer using nanofluids—An overview. Renew. Sustain. Energy Rev. 2010, 14, 629–641. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, C.; Paul, S.; Godson Asirvatham, L.; Manova, S.; Nimmagadda, R.; Raja Bose, J.; Wongwises, S. Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid. Fluids 2020, 5, 172. https://doi.org/10.3390/fluids5040172
Almeida C, Paul S, Godson Asirvatham L, Manova S, Nimmagadda R, Raja Bose J, Wongwises S. Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid. Fluids. 2020; 5(4):172. https://doi.org/10.3390/fluids5040172
Chicago/Turabian StyleAlmeida, Charishma, Sohan Paul, Lazarus Godson Asirvatham, Stephen Manova, Rajesh Nimmagadda, Jefferson Raja Bose, and Somchai Wongwises. 2020. "Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid" Fluids 5, no. 4: 172. https://doi.org/10.3390/fluids5040172
APA StyleAlmeida, C., Paul, S., Godson Asirvatham, L., Manova, S., Nimmagadda, R., Raja Bose, J., & Wongwises, S. (2020). Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid. Fluids, 5(4), 172. https://doi.org/10.3390/fluids5040172