Heat-Dissipation Performance of Nanocomposite Phase-Change Materials in a Twin-Heat-Source System
Abstract
:1. Introduction
2. Experimental Preparation
2.1. Experimental Materials and Instruments
2.2. Preparation of Composite PCMs
2.3. Experimental System
2.4. Experimental Uncertainty Analysis
3. Results and Discussion
3.1. Effect of PCMs on the Cooling Performance
3.2. Effect of Nanoparticle Concentration on the Performance of PCMs
3.3. Analysis of Infrared Temperature Field
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.C.; Rao, Z.H.; Huo, Y.T.; Wang, S.F. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. Int. J. Therm. Sci. 2016, 102, 9–16. [Google Scholar] [CrossRef]
- Bose, P.; Amirtham, V.A. A review on thermal conductivity enhancement of paraffin wax as latent heat energy storage material. Renew. Sustain. Energy Rev. 2016, 65, 81–100. [Google Scholar] [CrossRef]
- Fan, L.W.; Fang, X.; Wang, X.; Zeng, Y.; Xiao, Y.Q.; Yu, Z.T.; Xu, X.; Hu, Y.C.; Cen, K.F. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 2013, 110, 163–172. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, C.X.; Wang, Y.L.; Zhu, Y.J. Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials. Int. J. Heat Mass Transf. 2019, 140, 671–677. [Google Scholar] [CrossRef]
- Babapoor, A.; Karimi, G. Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: Comparison and optimization. Appl. Therm. Eng. 2015, 90, 945–951. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y.Y. Preparation and characteristics evaluation of mono and hybrid nanoenhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers. Manag. 2020, 205, 112444. [Google Scholar] [CrossRef]
- Li, W.Q.; Wan, H.; Jing, T.T.; Li, Y.B.; Liu, P.J.; He, G.Q.; Qin, F. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study. Appl. Therm. Eng. 2019, 146, 413–421. [Google Scholar] [CrossRef]
- Ren, Q.L.; Guo, P.H.; Zhu, J.J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite. Int. J. Heat Mass Transf. 2020, 149, 119199. [Google Scholar] [CrossRef]
- Ling, Y.Z.; Zhang, X.S.; Wang, F.; She, X.H. Performance study of phase change materials coupled with threedimensional oscillating heat pipes with different structures for electronic cooling. Renew. Energy 2020, 154, 636–649. [Google Scholar] [CrossRef]
- Yang, X.H.; Tan, S.C.; He, Z.Z.; Liu, J. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock. Energy Convers. Manag. 2018, 160, 467–476. [Google Scholar] [CrossRef]
- Krishna, J.; Kishore, P.S.; Solomon, A.B. Heat pipe with nano enhanced-PCM for electronic cooling application. Exp. Therm. Fluid Sci. 2017, 81, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Wang, Y.; Li, Y.X.; Baleta, J.; Wang, J.; Sundén, B. Effect of phase change materials on heat dissipation of a multiple heat source system. Open Phys. 2019, 17, 797–807. [Google Scholar] [CrossRef]
- Zhao, J.T.; Qu, J.; Rao, Z.H. Thermal characteristic and analysis of closed loop oscillation heat pipe/phase change material (CLOHP/PCM) coupling module with different working media. Int. J. Heat Mass Transf. 2018, 126, 257–266. [Google Scholar] [CrossRef]
Equipment | Model | Instrument Range | Accuracy |
---|---|---|---|
Ultrasonic oscillator | SK1200H-J | – | – |
Electronic balance | FA2004B | 0~200 g | ±0.0001 g |
Thermostatic water bath | HH-1 | 0~99.9 °C | ±1 °C |
Agilent data collector | 34972A | – | ±0.001 °C |
Infrared camera | TESTO 885-2 | −20~1200 °C | ±2 °C |
Variable | Maximum Uncertainty |
---|---|
Heat input (W) | ±1.5% |
Heat output (W) | ±3.1% |
Thermocouple measuring temperature | ±1% |
PCM heat storage | ±1.7% |
Heating Stage | Heat-Source 1 Power | Heat-Source 2 Power | Time |
---|---|---|---|
Heating stage 1 | 5 W | 10 W | 5 min |
Heating stage 2 | 10 W | 10 W | 5 min |
Heating stage 3 | 5 W | 10 W | 5 min |
Heating stage 4 | 10 W | 10 W | 5 min |
Heating stage 5 | 5 W | 10 W | 5 min |
Heating stage 6 | 10 W | 10 W | 5 min |
Heating stage 7 | 5 W | 10 W | 5 min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Yang, L.; Sundén, B. Heat-Dissipation Performance of Nanocomposite Phase-Change Materials in a Twin-Heat-Source System. Fluids 2020, 5, 174. https://doi.org/10.3390/fluids5040174
Li Y, Wang J, Yang L, Sundén B. Heat-Dissipation Performance of Nanocomposite Phase-Change Materials in a Twin-Heat-Source System. Fluids. 2020; 5(4):174. https://doi.org/10.3390/fluids5040174
Chicago/Turabian StyleLi, Yanxin, Jin Wang, Li Yang, and Bengt Sundén. 2020. "Heat-Dissipation Performance of Nanocomposite Phase-Change Materials in a Twin-Heat-Source System" Fluids 5, no. 4: 174. https://doi.org/10.3390/fluids5040174
APA StyleLi, Y., Wang, J., Yang, L., & Sundén, B. (2020). Heat-Dissipation Performance of Nanocomposite Phase-Change Materials in a Twin-Heat-Source System. Fluids, 5(4), 174. https://doi.org/10.3390/fluids5040174