Multi-Physics Modeling of Electrochemical Deposition
Abstract
:1. Introduction
2. Problem Formulation
2.1. Governing Equations
2.2. Material and Fluid Properties
3. Numerical Methods
3.1. Discretization
3.1.1. Finite Volume Method (FVM)
3.1.2. Finite Area Method (FAM)
3.2. Solver Algorithm
3.3. Solver Parameters
4. Validation Test Case
4.1. Description
4.2. Model Formulation and Assumptions
4.3. Domain and Computational Mesh
4.4. Parameters
4.5. Solution
4.6. Analysis and Discussion
5. Ionic Transport Case
Analysis and Discussion
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ECD | Electrochemical deposition |
PISO | Pressure Implicit with Splitting Operator |
ALE | Arbitrary Lagrangian-Eulerian |
EITM | Explicit Interface Tracking Method |
OpenFOAM | Open Field Operation And Manipulation |
FVM | Finite Volume Method |
FAM | Finite Area Method |
CV | Control Volume |
References
- Takayama, T.; Yoneda, M. Implementation of a Model for Electroplating in OpenFOAM R. In Proceedings of the 8th International OpenFOAM Workshop, Jeju, Korea, 11–14 June 2013; p. 13. [Google Scholar]
- Litrico, G.; Vieira, C.B.; Askari, E.; Proulx, P. Strongly coupled model for the prediction of the performances of an electrochemical reactor. Chem. Eng. Sci. 2017, 170, 767–776. [Google Scholar] [CrossRef]
- Ritter, G.; McHugh, P.; Wilson, G.; Ritzdorf, T. Two-and three-dimensional numerical modeling of copper electroplating for advanced ULSI metallization. Solid-State Electron. 2000, 44, 797–807. [Google Scholar] [CrossRef]
- Karcz, M. From 0D to 1D modeling of tubular solid oxide fuel cell. Energy Convers. Manag. 2009, 50, 2307–2315. [Google Scholar] [CrossRef]
- Kendall, K.; Kendall, M. High-Temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Drese, K.S. Design rules for electroforming in the LIGA process. J. Electrochem. Soc. 2004, 151, D39. [Google Scholar] [CrossRef]
- Hughes, M.; Bailey, C.; McManus, K. Multi physics modelling of the electrodeposition process. In Proceedings of the 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime 2007, London, UK, 16–18 April 2007; pp. 1–8. [Google Scholar]
- Hughes, M.; Strussevitch, N.; Bailey, C.; McManus, K.; Kaufmann, J.; Flynn, D.; Desmulliez, M.P. Numerical algorithms for modelling electrodeposition: Tracking the deposition front under forced convection from megasonic agitation. Int. J. Numer. Methods Fluids 2010, 64, 237–268. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, S.; Sun, X.; Chen, J.; Miao, M.; Jin, Y. Numerical modeling and experimental verification of through silicon via (TSV) filling in presence of additives. Microelectron. Eng. 2014, 117, 8–12. [Google Scholar] [CrossRef]
- Fukukawa, M.; Tong, L. Effect of Mass Flow Induced by a Reciprocating Paddle on Electroplating. In Proceedings of the 2017 COMSOL Conference, Boston, MA, USA, 4–6 October 2017; p. 5. [Google Scholar]
- Oliaii, E.; Litrico, G.; Désilets, M.; Lantagne, G. Mass transport and energy consumption inside a lithium electrolysis cell. Electrochim. Acta 2018, 290, 390–403. [Google Scholar] [CrossRef]
- Strusevich, N.; Bailey, C.; Costello, S.; Patel, M.; Desmulliez, M. Numerical modeling of the electroplating process for microvia fabrication. In Proceedings of the 2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Wroclaw, Poland, 15–17 April 2013; pp. 1–6. [Google Scholar]
- Strusevich, N. Numerical Modelling of Electrodeposition Process for Printed Circuit Boards Manufacturing. Ph.D. Thesis, University of Greenwich, London, UK, 2013. [Google Scholar]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer Science & Business Media: Berlin, Germany, 2010; Volume 37. [Google Scholar]
- Rieger, P.H. Electrochemistry, 2nd ed.; Chapman and Hall Inc.: New York, NY, USA, 1994. [Google Scholar]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, UK, 1996. [Google Scholar]
- Tukovic, Z.; Jasak, H. Simulation of Free-Rising Bubble with Soluble Surfactant using Moving Mesh Finite Volume/Area Method. In Proceedings of the 6th International Conference on CFD in Oil & Gas, Trondheim, Norway, 10–12 June 2008; p. 11. [Google Scholar]
- Greenshields, C.J. ProgrammersGuide.pdf. 2015. Available online: http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf (accessed on 21 September 2020).
- OpenCFD Ltd., United Kingdom. OpenFOAM—The Open Source CFD Toolbox—User’s Guide, 2nd ed.; OpenCFD Ltd.: Bracknell, UK, 2018. [Google Scholar]
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics, 3rd ed.; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Rauter, M.; Tuković, Ž. A finite area scheme for shallow granular flows on three-dimensional surfaces. Comput. Fluids 2018, 166, 184–199. [Google Scholar] [CrossRef] [Green Version]
Constants | Description | Dimensions (SI) |
---|---|---|
Fluid density | ||
Kinematic viscosity of the fluid | ||
D | Cu ion diffusivity | |
F | Faraday’s constant | |
n | Ion valence | |
R | Universal gas constant | |
T | Operating temperature | |
Bulk concentration of copper ions in the electrolyte | ||
Molar mass of copper | ||
Density of copper | ||
Initial seed layer thickness | ||
Initial seed layer conductivity | ||
Electric conductivity of solid copper | ||
Exchange current density | ||
Charge transfer coefficients for the anode and cathode |
Field | Description | Dimensions (SI) |
---|---|---|
Fluid velocity | ||
p | Fluid pressure | |
Body force acting on the fluid | ||
C | Mass fraction of copper ion concentration | |
Electric potential of the electrolyte | ||
Electric potential copper layer | ||
Interface potential | ||
Electric flux | ||
Deposited copper layer thickness | ||
i | Current density | |
Effective conductivity to account for and | ||
Overpotential |
Finite Volume Method | ||||
---|---|---|---|---|
Field | Equation | Solver | Preconditioner | Smoother |
p | (1), (2) | GAMG | FDIC | DICGaussSeidel |
(1), (2) | PBiCGStab | DILU | DILUGaussSeidel | |
C | (3) | PBiCGStab | DILU | DILUGaussSeidel |
(5) | PCG | DIC | - | |
Finite Area Method | ||||
(6) | PCG | DIC | - | |
(11) | PBiCGStab | DILU | DILUGaussSeidel |
Operator | Scheme | Description |
---|---|---|
backward | Transient, order, potentially unbounded, implicit | |
Gauss linear 1.0 | Central differencing, bounded | |
Gauss upwind/Gauss linear | order, bounded/ order, unbounded | |
corrected | Explicit non-orthogonal correction at cell faces, order, conservative | |
Gauss linear corrected | order, unbounded, non-orthogonal correction, conservative |
Parameter | Symbol | Value |
---|---|---|
Electric conductivity of electrolyte | 1.0 S/m | |
Electric conductivity of deposited metal | 5.95 × 10 S/m | |
Surface electric conductivity of initial deposited surface | 59.5 S | |
Molar weight of deposited metal | m | 63.546 g/mol |
Valence of metallic ion in electrolyte | n | 2 |
Mass density of deposited metal | 8940 kg/m | |
Temperature | T | 300 K |
Total current | J | 5 A |
Exchange current density | 150 A/m | |
Charge transfer coefficients | and | 0.5, 0.5 |
Time step | 10 s | |
Tolerance of potential relaxation subcycle | 1.0 × 10 | |
Copper diffusivity | D | 0.67 × 10 m/s |
Bulk copper concentration | 6.3536 kg/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kauffman, J.; Gilbert, J.; Paterson, E. Multi-Physics Modeling of Electrochemical Deposition. Fluids 2020, 5, 240. https://doi.org/10.3390/fluids5040240
Kauffman J, Gilbert J, Paterson E. Multi-Physics Modeling of Electrochemical Deposition. Fluids. 2020; 5(4):240. https://doi.org/10.3390/fluids5040240
Chicago/Turabian StyleKauffman, Justin, John Gilbert, and Eric Paterson. 2020. "Multi-Physics Modeling of Electrochemical Deposition" Fluids 5, no. 4: 240. https://doi.org/10.3390/fluids5040240
APA StyleKauffman, J., Gilbert, J., & Paterson, E. (2020). Multi-Physics Modeling of Electrochemical Deposition. Fluids, 5(4), 240. https://doi.org/10.3390/fluids5040240