Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Thermal Conductivity Measurements
2.4. Viscosity Measurements
2.5. Density Measurements
2.6. Isobaric Heat Capacity Measurements
3. Results
3.1. Thermal Conductivity
3.2. Viscosity
3.3. Density and Isobaric Thermal Expansion Coefficient
3.4. Isobaric Heat Capacity
3.5. Prandtl Number
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a0 | polynomial coefficient in Equation (1) | kg⋅m−3 |
a1 | polynomial coefficient in Equation (1) | kg⋅m−3⋅K–1 |
a2 | polynomial coefficient in Equation (1) | kg⋅m−3⋅K–2 |
Cp | isobaric heat capacity | J·kg–1·K–1 |
d | nanotube diameter | nm |
l | nanotube length | nm |
Pr | Prandtl number | – |
SD | standard deviation of density | kg·m−3 |
T | temperature | K |
αp | isobaric thermal expansion coefficient | K–1 |
δρ | mean deviation of density | kg·m−3 |
η | dynamic viscosity | mPa·s |
λ | thermal conductivity | W·m–1·K–1 |
ρ | density | kg⋅m−3 |
References
- Jóźwiak, B.; Boncel, S. Rheology of ionanofluids—A review. J. Mol. Liq. 2020, 302, 112568. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Wole-Osho, I.; Almanassra, I.W.; Abdullatif, Y.M.; Al-Ansari, T. An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. 2020, 1–56. [Google Scholar] [CrossRef]
- Żyła, G.; Vallejo, J.P.; Fal, J.; Lugo, L. Nanodiamonds—Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties. Int. J. Heat Mass Transf. 2018, 121, 1201–1213. [Google Scholar] [CrossRef]
- Barai, D.P.; Bhanvase, B.A.; Sonawane, S.H. A Review on Graphene Derivatives-Based Nanoflfluids: Investigation on Properties and Heat Transfer Characteristics. Ind. Eng. Chem. Res. 2020, 59, 10231–10277. [Google Scholar] [CrossRef]
- Mirsaeidi, A.M.; Yousefi, F. Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: An experimental investigation and development of new correlation function and ANN modeling. J. Therm. Anal. Calorim. 2019, 1–11. [Google Scholar] [CrossRef]
- Tam, N.T.; Phuong, N.V.; Khoi, P.H.; Minh, P.N.; Afrand, M.; Van Trinh, P.; Thang, B.H.; Żyła, G.; Estellé, P. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials 2020, 10, 1199. [Google Scholar] [CrossRef]
- Ghalandari, M.; Maleki, A.; Haghighi, A.; Shadloo, M.S.; Nazari, M.A.; Tlili, I. Applications of nanofluids containing carbon nanotubes in solar energy systems: A review. J. Mol. Liq. 2020, 313, 113476. [Google Scholar] [CrossRef]
- De Volder, M.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Chen, L. Adjustable thermal conductivity in carbon nanotube nanofluids. Phys. Lett. A 2009, 373, 1861–1864. [Google Scholar] [CrossRef]
- Liu, M.-S.; Lin, M.C.-C.; Huang, I.-T.; Wang, C.-C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transf. 2005, 32, 1202–1210. [Google Scholar] [CrossRef]
- Kumar, P.G.; Kumaresan, V.; Velraj, R. Stability, viscosity, thermal conductivity, and electrical conductivity enhancement of multi-walled carbon nanotube nanofluid using gum arabic. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 230–240. [Google Scholar] [CrossRef]
- Boncel, S.; Zniszczoł, A.; Pawlyta, M.; Labisz, K.; Dzido, G. Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes. Heat Mass Transf. 2017, 54, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Jóźwiak, B.; Dzido, G.; Zorębski, E.; Kolanowska, A.; Jȩdrysiak, R.; Dziadosz, J.; Libera, M.; Boncel, S.; Dzida, M. Remarkable Thermal Conductivity Enhancement in Carbon-Based Ionanofluids: Effect of Nanoparticle Morphology. ACS Appl. Mater. Interfaces 2020, 12, 38113–38123. [Google Scholar] [CrossRef] [PubMed]
- Sahgal, A.; Hayduk, W. Ethylene solubility and diffusivity in hexane-dodecane and ethylene glycol-butanol solutions. J. Chem. Eng. Data 1979, 24, 222–227. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Touhara, H.; Nakanishi, K.; Watanabe, N. Molar excess enthalpies for water + ethanediol, + 1,2-propanediol, and + 1,3-propanediol at 298.15 K. J. Chem. Thermodyn. 1977, 9, 801–805. [Google Scholar] [CrossRef]
- Zemánková, K.; Troncoso, J.; Romaní, L. Excess volumes and excess heat capacities for alkanediol+water systems in the temperature interval (283.15–313.15) K. Fluid Phase Equilibria 2013, 356, 1–10. [Google Scholar] [CrossRef]
- Douhéret, G.; Pal, A. Dielectric constants and densities of aqueous mixtures of 2-alkoxyethanols at 25.degree.C. J. Chem. Eng. Data 1988, 33, 40–43. [Google Scholar] [CrossRef]
- Zorębski, E.; Lubowiecka-Kostka, B. Thermodynamic and transport properties of (1,2-ethanediol+1-nonanol) at temperatures from (298.15 to 313.15) K. J. Chem. Thermodyn. 2009, 41, 197–204. [Google Scholar] [CrossRef]
- Zorębski, E.; Waligóra, A. Densities, Excess Molar Volumes, and Isobaric Thermal Expansibilities for 1,2-Ethanediol + 1-Butanol, or 1-Hexanol, or 1-Octanol in the Temperature Range from (293.15 to 313.15) K. J. Chem. Eng. Data 2008, 53, 591–595. [Google Scholar] [CrossRef]
- Cocchi, M.; Marchetti, A.; Pigani, L.; Sanna, G.; Tassi, L.; Ulrici, A.; Vaccari, G.; Zanardi, C. Density and volumetric properties of ethane-1,2-diol+di-ethylen-glycol mixtures at different temperatures. Fluid Phase Equilibria 2000, 172, 93–104. [Google Scholar] [CrossRef]
- Jiménez, E.; Cabanas, M.; Segade, L.; García-Garabal, S.; Casas, H. Excess volume, changes of refractive index and surface tension of binary 1,2-ethanediol + 1-propanol or 1-butanol mixtures at several temperatures. Fluid Phase Equilibria 2001, 180, 151–164. [Google Scholar] [CrossRef]
- Corradini, F.; Franchini, G.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, G. Viscosities of 1,2-Ethanediol-2-Methoxyethanol solvent mixtures at various temperatures. J. Solut. Chem. 1993, 22, 1019–1028. [Google Scholar] [CrossRef]
- Pastoriza-Gallego, M.; Lugo, L.; Cabaleiro, D.; Legido, J.; Piñeiro, M. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J. Chem. Thermodyn. 2014, 73, 23–30. [Google Scholar] [CrossRef]
- Pastoriza-Gallego, M.J.; Lugo, L.; Legido, J.L.; Piñeiro, M.M. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res. Lett. 2011, 6, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moosavi, M.; Taghizadeh, K.; Gholami, M.; Rostami, A.A. Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling. J. Chem. Thermodyn. 2017, 113, 236–249. [Google Scholar] [CrossRef]
- Decagon Devices Inc. KD2 Pro Thermal Properties Analyzer–Operator’s Manual; Decagon Devices Inc.: Pullman, WA, USA, 2016; Available online: http://manuals.decagon.com/Manuals/13351_KD2%20Pro_Web.pdf (accessed on 10 December 2020).
Physicochemical Property | This Work | Literature |
---|---|---|
ρ (kg⋅m−3) | 1109.84 ± 0.05 | 1109.60 [14], 1109.89 [15], 1109.79 [16], 1109.82 [17], 1109.88 [18], 1109.88 [19], 1109.91 [20], 1110.09 [21] |
η (mPa·s) | 17.1 ± 3.0 | 16.95 [18], 17.14 [22], 17.25 [23], 17.7 [24] |
λ (W·m−1·K−1) | 0.247 ± 5% | 0.245 [24], 0.2433 [25] |
Name | Average Length (μm) | Average Diameter (nm) | Aspect Ratio (−) | Specific Surface Area (m2⋅g−1) | Density (g⋅cm−3) | Carbon Purity (%) |
---|---|---|---|---|---|---|
in-house 16h MWCNTs | 770 | 60–80 | 11,000 | 22 | 2.1 | 98 |
T (K) | λ (W·m−1·K−1) | |||||||
---|---|---|---|---|---|---|---|---|
Series 1 | Series 2 | Series 3 | Mean | Series 1 | Series 2 | Series 3 | Mean | |
EG | EG + 0.25 wt% in-house 16h MWCNTs | |||||||
298.15 | 0.247 | 0.246 | 0.247 | 0.247 | 0.270 | 0.269 | 0.269 | 0.269 |
303.15 | 0.246 | 0.246 | 0.245 | 0.246 | 0.269 | 0.268 | 0.268 | 0.268 |
308.15 | 0.247 | 0.245 | 0.243 | 0.245 | 0.265 | 0.262 | 0.264 | 0.264 |
EG + 0.5 wt% in-house 16h MWCNTs | EG + 0.75 wt% in-house 16h MWCNTs | |||||||
298.15 | 0.286 | 0.285 | 0.286 | 0.286 | 0.300 | 0.304 | 0.306 | 0.303 |
303.15 | 0.285 | 0.284 | 0.284 | 0.284 | 0.300 | 0.302 | 0.304 | 0.302 |
308.15 | 0.278 | 0.282 | 0.284 | 0.281 | 0.297 | 0.302 | 0.303 | 0.301 |
EG + 1 wt% in-house 16h MWCNTs | ||||||||
298.15 | 0.325 | 0.324 | 0.325 | 0.324 | ||||
303.15 | 0.317 | 0.319 | 0.320 | 0.318 | ||||
308.15 | 0.310 | 0.312 | 0.314 | 0.312 |
T (K) | ρ (kg·m−3) | T (K) | ρ (kg·m−3) | T (K) | ρ (kg·m−3) |
---|---|---|---|---|---|
EG | EG + 0.25 wt% in-house 16h MWCNTs | EG + 0.5 wt% in-house 16h MWCNTs | |||
283.15 | 1120.25 | 283.15 | 1121.83 | 283.15 | 1123.68 |
288.15 | 1116.78 | 288.15 | 1118.36 | 288.15 | 1120.22 |
293.15 | 1113.29 | 293.15 | 1114.87 | 293.15 | 1116.73 |
298.15 | 1109.84 | 298.15 | 1111.38 | 298.15 | 1113.24 |
303.15 | 1106.29 | 303.15 | 1107.87 | 303.15 | 1109.73 |
308.15 | 1102.77 | 308.15 | 1104.35 | 308.15 | 1106.21 |
313.15 | 1099.23 | 313.15 | 1100.81 | 313.15 | 1102.68 |
318.15 | 1095.68 | 318.15 | 1097.26 | 318.15 | 1099.13 |
323.15 | 1092.11 | 323.15 | 1093.69 | 323.15 | 1095.56 |
328.15 | 1088.52 | 328.15 | 1090.10 | 328.15 | 1091.97 |
333.15 | 1084.90 | 333.15 | 1086.48 | 333.15 | 1088.36 |
EG + 0.75 wt% in-house 16h MWCNTs | EG + 1 wt% in-house 16h MWCNTs | ||||
283.15 | 1125.30 | 283.15 | 1127.18 | ||
288.15 | 1121.84 | 288.15 | 1123.73 | ||
293.15 | 1118.36 | 293.15 | 1120.26 | ||
298.15 | 1114.88 | 298.15 | 1116.77 | ||
303.15 | 1111.38 | 303.15 | 1113.27 | ||
308.15 | 1107.86 | 308.15 | 1109.76 | ||
313.15 | 1104.34 | 313.15 | 1106.24 | ||
318.15 | 1100.79 | 318.15 | 1102.69 | ||
323.15 | 1097.22 | 323.15 | 1099.13 | ||
328.15 | 1093.63 | 328.15 | 1095.54 | ||
333.15 | 1090.02 | 333.15 | 1091.93 |
Concentration (wt%) | a0 (kg⋅m−3) | SD (kg⋅m−3) | a1 (kg⋅m−3⋅K−1) | SD (kg⋅m−3⋅K−1) | a2⋅104 (kg⋅m−3⋅K−2) | SD⋅104 (kg⋅m−3⋅K−2) | δρ (kg⋅m−3) |
---|---|---|---|---|---|---|---|
0 | 1120.25 | 0.0067 | −0.69078 | 0.00062 | −3.1935 | 0.12 | 0.0097 |
0.25 | 1121.82 | 0.0061 | −0.69119 | 0.00056 | −3.0816 | 0.11 | 0.0080 |
0.5 | 1123.68 | 0.0054 | −0.69085 | 0.00050 | −3.0583 | 0.10 | 0.0071 |
0.75 | 1125.29 | 0.0064 | −0.68878 | 0.00059 | −3.2914 | 0.11 | 0.0084 |
1 | 1127.18 | 0.0062 | −0.68823 | 0.00057 | −3.2960 | 0.11 | 0.0081 |
T (K) | αp·104 (K−1) | T (K) | αp·104 (K−1) | T (K) | αp·104 (K−1) |
---|---|---|---|---|---|
EG | EG + 0.25 wt% in-house 16h MWCNTs | EG + 0.5 wt% in-house 16h MWCNTs | |||
283.15 | 6.166 | 283.15 | 6.161 | 283.15 | 6.148 |
288.15 | 6.214 | 288.15 | 6.208 | 288.15 | 6.194 |
293.15 | 6.262 | 293.15 | 6.255 | 293.15 | 6.241 |
298.15 | 6.310 | 298.15 | 6.303 | 298.15 | 6.288 |
303.15 | 6.359 | 303.15 | 6.350 | 303.15 | 6.335 |
308.15 | 6.409 | 308.15 | 6.399 | 308.15 | 6.383 |
313.15 | 6.458 | 313.15 | 6.447 | 313.15 | 6.431 |
318.15 | 6.508 | 318.15 | 6.496 | 318.15 | 6.480 |
323.15 | 6.559 | 323.15 | 6.545 | 323.15 | 6.529 |
328.15 | 6.610 | 328.15 | 6.595 | 328.15 | 6.579 |
333.15 | 6.661 | 333.15 | 6.646 | 333.15 | 6.628 |
EG + 0.75 wt% in-house 16h MWCNTs | EG + 1 wt% in-house 16h MWCNTs | ||||
283.15 | 6.121 | 283.15 | 6.106 | ||
288.15 | 6.169 | 288.15 | 6.154 | ||
293.15 | 6.218 | 293.15 | 6.202 | ||
298.15 | 6.266 | 298.15 | 6.251 | ||
303.15 | 6.316 | 303.15 | 6.300 | ||
308.15 | 6.366 | 308.15 | 6.350 | ||
313.15 | 6.416 | 313.15 | 6.400 | ||
318.15 | 6.466 | 318.15 | 6.451 | ||
323.15 | 6.517 | 323.15 | 6.501 | ||
328.15 | 6.569 | 328.15 | 6.553 | ||
333.15 | 6.621 | 333.15 | 6.605 |
T (K) | Cp (J·kg−1·K−1) | T (K) | Cp (J·kg−1·K−1) | T (K) | Cp (J·kg−1·K−1) |
---|---|---|---|---|---|
EG | EG + 0.5 wt% in-house 16h MWCNTs | EG + 1 wt% in-house 16h MWCNTs | |||
283.15 | 2387 | 283.15 | 2385 | 283.15 | 2365 |
288.15 | 2415 | 288.15 | 2410 | 288.15 | 2388 |
293.15 | 2442 | 293.15 | 2434 | 293.15 | 2411 |
298.15 | 2469 | 298.15 | 2459 | 298.15 | 2435 |
303.15 | 2495 | 303.15 | 2483 | 303.15 | 2458 |
308.15 | 2520 | 308.15 | 2506 | 308.15 | 2482 |
313.15 | 2544 | 313.15 | 2529 | 313.15 | 2506 |
318.15 | 2567 | 318.15 | 2552 | 318.15 | 2530 |
323.15 | 2590 | 323.15 | 2575 | 323.15 | 2554 |
328.15 | 2612 | 328.15 | 2597 | 328.15 | 2578 |
333.15 | 2633 | 333.15 | 2618 | 333.15 | 2602 |
T (K) | Pr (–) | T (K) | Pr (–) | T (K) | Pr (–) |
---|---|---|---|---|---|
EG | EG + 0.5 wt% in-house 16h MWCNTs | EG + 1 wt% in-house 16h MWCNTs | |||
298.15 | 170.9 | 298.15 | 211.5 | 298.15 | 257.0 |
303.15 | 141.0 | 303.15 | 178.4 | 303.15 | 222.6 |
308.15 | 117.3 | 308.15 | 149.8 | 308.15 | 195.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzóska, K.; Jóźwiak, B.; Golba, A.; Dzida, M.; Boncel, S. Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes. Fluids 2020, 5, 241. https://doi.org/10.3390/fluids5040241
Brzóska K, Jóźwiak B, Golba A, Dzida M, Boncel S. Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes. Fluids. 2020; 5(4):241. https://doi.org/10.3390/fluids5040241
Chicago/Turabian StyleBrzóska, Karolina, Bertrand Jóźwiak, Adrian Golba, Marzena Dzida, and Sławomir Boncel. 2020. "Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes" Fluids 5, no. 4: 241. https://doi.org/10.3390/fluids5040241
APA StyleBrzóska, K., Jóźwiak, B., Golba, A., Dzida, M., & Boncel, S. (2020). Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes. Fluids, 5(4), 241. https://doi.org/10.3390/fluids5040241