On the Evaluation of Mesh Resolution for Large-Eddy Simulation of Internal Flows Using Openfoam †
Abstract
:1. Introduction
2. Simulation and Modeling of Turbulent Flow
- User selection of inlet surface .
- User definition of average velocity , Reynolds stresses and turbulence length-scales , for .
- Eddy bounding box taken as: max, min for .
- Definition of the number of eddies.
- Assigning random positions and intensities to all the eddies.
- Eddies being convected through the eddy box, , where is the bulk velocity.
- calculated and superimposed to to generate the inlet condition.
- Repeat steps 6–7 for all the subsequent time steps.
- N: the number of eddies introduced into the DFSEM;
- with being the eddy length scale for the eddy;
- ) is a suitable shape function; and
- are random numbers with zero averages which represent eddy intensity.
- ; and
- is the Levi-Civita symbol.
3. Verification and Validation Results
3.1. Channel Flow Test Case
3.2. Sudden-Expansion Test Case
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gentner, C.; Sallaberger, M.; Widmer, C.; Bobach, B.J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032046. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, J.; Giroux, A.M.; Morissette, J.F. CFD configurations for hydraulic turbine startup. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032021. [Google Scholar] [CrossRef]
- Hosseinimanesh, H.; Devals, C.; Nennemann, B.; Reggio, M.; Guibault, F. A Numerical Study of Francis Turbine Operation at No-Load Condition. J. Fluids Eng. 2016, 139, 011104. [Google Scholar] [CrossRef]
- Foroutan, H.; Yavuzkurt, S. Simulation of flow in a simplified draft tube: Turbulence closure considerations. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 022020. [Google Scholar] [CrossRef]
- Krappel, T.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.; Flurl, B.; Unger, F.; Galpin, P. Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load using Highly Parallel CFD Simulations. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 062014. [Google Scholar] [CrossRef] [Green Version]
- Pasche, S.; Avellan, F.; Gallaire, F. Part Load Vortex Rope as a Global Unstable Mode. J. Fluids Eng. 2017, 139, 051102. [Google Scholar] [CrossRef]
- Neto, A.D.A.; Jester-Zuerker, R.; Jung, A.; Maiwald, M. Evaluation of a Francis turbine draft tube flow at part load using hybrid RANS-LES turbulence modelling. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 062010. [Google Scholar] [CrossRef]
- Sentyabov, A.V.; Gavrilov, A.A.; Dekterev, A.A.; Minakov, A.V. Numerical investigation of the vortex core precession in a model hydro turbine with the aid of hybrid methods for computation of turbulent flows. Thermophys. Aeromech. 2014, 21, 707–718. [Google Scholar] [CrossRef]
- Paik, J.; Sotiropoulos, F.; Sale, M.J. Numerical Simulation of Swirling Flow in Complex Hydroturbine Draft Tube Using Unsteady Statistical Turbulence Models. J. Hydraul. Eng. 2005, 131, 441–456. [Google Scholar] [CrossRef]
- Minakov, A.; Platonov, D.; Dekterev, A.; Sentyabov, A.; Zakharov, A. The analysis of unsteady flow structure and low frequency pressure pulsations in the high-head Francis turbines. Int. J. Heat Fluid Flow 2015, 53, 183–194. [Google Scholar] [CrossRef]
- Javadi, A.; Nilsson, H. A comparative study of scale-adaptive and large-eddy simulations of highly swirling turbulent flow through an abrupt expansion. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 022017. [Google Scholar] [CrossRef] [Green Version]
- Pacot, O.; Kato, C.; Avellan, F. High-resolution LES of the rotating stall in a reduced scale model pump-turbine. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 022018. [Google Scholar] [CrossRef] [Green Version]
- Morgut, M.; Jošt, D.; Nobile, E.; Škerlavaj, A. Numerical investigation of the flow in axial water turbines and marine propellers with scale-resolving simulations. J. Phys. Conf. Ser. 2015, 655, 012052. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, L.; Wang, Z. The numerical simulation of draft tube cavitation in Francis turbine at off-design conditions. Eng. Comput. 2016, 33, 139–155. [Google Scholar] [CrossRef]
- Minakov, A.; Platonov, D.; Sentyabov, A.; Gavrilov, A. Francis-99 turbine numerical flow simulation of steady state operation using RANS and RANS/LES turbulence model. J. Phys. Conf. Ser. 2017, 782, 012005. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, C. Compressible Large Eddy Simulation of a Francis Turbine During Speed-No-Load: Rotor Stator Interaction and Inception of a Vortical Flow. J. Eng. Gas Turbines Power 2018, 140, 112601. [Google Scholar] [CrossRef]
- Trivedi, C.; Dahlhaug, O.G. Interaction between trailing edge wake and vortex rings in a Francis turbine at runaway condition: Compressible large eddy simulation. Phys. Fluids 2018, 30, 075101. [Google Scholar] [CrossRef]
- Gant, S.E. Reliability Issues of LES-Related Approaches in an Industrial Context. Flow Turbul. Combust. 2010, 84, 325–335. [Google Scholar] [CrossRef]
- Celik, I.; Klein, M.; Freitag, M.; Janicka, J. Assessment measures for URANS/DES/LES: An overview with applications. J. Turbul. 2006, 7, N48. [Google Scholar] [CrossRef]
- Davidson, L. Large Eddy Simulations: How to evaluate resolution. Int. J. Heat Fluid Flow 2009, 30, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Salvetti, M.V. (Ed.) Quality and Reliability of Large-Eddy Simulations II; Number 16 in ERCOFTAC Series; OCLC: 837896204; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Poletto, R.; Craft, T.; Revell, A. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES. Flow Turbul. Combust. 2013, 91, 519–539. [Google Scholar] [CrossRef]
- Jarrin, N.; Prosser, R.; Uribe, J.C.; Benhamadouche, S.; Laurence, D. Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a Synthetic-Eddy Method. Int. J. Heat Fluid Flow 2009, 30, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Concli, F.; Schaefer, C.T.; Bohnert, C. Innovative Meshing Strategies for Bearing Lubrication Simulations. Lubricants 2020, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Dellenback, P.A.; Metzger, D.E.; Neitzel, G.P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion. AIAA J. 1988, 26, 669–681. [Google Scholar] [CrossRef]
- Schlüter, J.U.; Pitsch, H.; Moin, P. Large-Eddy Simulation Inflow Conditions for Coupling with Reynolds-Averaged Flow Solvers. AIAA J. 2004, 42, 478–484. [Google Scholar] [CrossRef]
Name | Number of Cells | Total Size | |||
---|---|---|---|---|---|
Mesh 1 | 980,590 | 62.51 | 19.09 | 1.34 | |
Mesh 2 | 1,886,000 | 49.63 | 15.13 | 1.11 | |
Mesh 3 | 3,763,620 | 39.39 | 12.05 | 0.91 |
Mesh: 1 | 2 | 3 | Periodic | DNS | Mesh: 1 | 2 | 3 | Periodic | DNS | ||
5 | 0.74 | 0.75 | 0.51 | 0.90 | 0.53 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | |
150 | 0.56 | 0.38 | 0.30 | 0.50 | 0.80 | 0.04 | 0.04 | 0.03 | 0.05 | 0.08 | |
5 | 0.74 | 0.75 | 0.51 | 0.90 | 0.13 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | |
150 | 0.56 | 0.38 | 0.30 | 0.50 | 0.15 | 0.04 | 0.04 | 0.03 | 0.05 | 0.07 | |
5 | 0.74 | 0.75 | 0.51 | 0.90 | 0.20 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | |
150 | 0.56 | 0.38 | 0.30 | 0.50 | 0.08 | 0.04 | 0.04 | 0.03 | 0.05 | 0.16 |
Name | Number of Cells | ||||
---|---|---|---|---|---|
Mesh 1 | 787,512 | 0.0005 | 0.195 | 35.42 | 5.29 |
Mesh 2 | 1,567,944 | 0.0005 | 0.360 | 28.70 | 4.21 |
Mesh 3 | 3,108,397 | 0.0001 | 0.412 | 54.17 | 6.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifollahi Moghadam, Z.; Guibault, F.; Garon, A. On the Evaluation of Mesh Resolution for Large-Eddy Simulation of Internal Flows Using Openfoam. Fluids 2021, 6, 24. https://doi.org/10.3390/fluids6010024
Seifollahi Moghadam Z, Guibault F, Garon A. On the Evaluation of Mesh Resolution for Large-Eddy Simulation of Internal Flows Using Openfoam. Fluids. 2021; 6(1):24. https://doi.org/10.3390/fluids6010024
Chicago/Turabian StyleSeifollahi Moghadam, Zahra, François Guibault, and André Garon. 2021. "On the Evaluation of Mesh Resolution for Large-Eddy Simulation of Internal Flows Using Openfoam" Fluids 6, no. 1: 24. https://doi.org/10.3390/fluids6010024
APA StyleSeifollahi Moghadam, Z., Guibault, F., & Garon, A. (2021). On the Evaluation of Mesh Resolution for Large-Eddy Simulation of Internal Flows Using Openfoam. Fluids, 6(1), 24. https://doi.org/10.3390/fluids6010024