Data-Targeted Prior Distribution for Variational AutoEncoder
Abstract
:1. Introduction
2. Definitions and Notations
2.1. VAE’s Cost Function
- is the observed data which in this case represent the instantaneous velocity field of an unsteady fluid flow; and , T is the maximum physical time.
- z is the random variable. We consider the transient dynamics (or the time evolution) of the unsteady fluid flow as a latent variable and we propose building a robust inferential model related to this variable.
- is a distribution over z which is optimized as an approximation of the true posterior . Hence, represents the encoder parameters.
- is the direct probability of the occurrence of an observed variable given a random variable z. Hence, are the decoder parameters.
- denotes the Kullback–Leibler divergence between the distribution approximation and the true posterior. As we do not have access to the true posterior of the observable fields, we assume an a priori distribution over z following the Bayes theorem.
- According to the Bayes theorem, the posterior probability is given by
2.2. Evidence Lower Bound
- is the prior distribution on the latent variables and it is usually defined as a multivariate standard normal distribution: .
- As does not depend on q, then Equation (3) shows that maximizing the evidence lower bound minimizes . Hence, the choice of prior distribution over z is very important in order to approximate at best the true posterior over z given an observed datum.
2.3. Physical Problem of Interest
- V is a real Hilbert space.
- , is an open subset of .
- A is a formal representation of the convection–diffusion Navier–Stokes equations.
2.4. KPOD and Kernel Trick
2.5. VAEs
3. Problem and Methodology Formulations
3.1. Motivation for the Method
3.2. Framework for the Implementation of the VAE with a Data-Targeted Prior Distribution
4. Numerical Experiments
4.1. Flow Solver
4.2. Governing Equations, Test-Case and Training Set
4.3. KPOD Orthogonal Coefficients with the Training Realizations
4.4. Variational Autoencoder Architecture
4.5. Reconstructions and New Generations
4.5.1. Comparison of Reconstructed Fields during the Training Phase
4.5.2. Comparison of Generated Fields during the Exploitation Phase
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatelier, A.; Fiorina, B.; Moureau, V.; Bertier, N. Large Eddy simulation of a turbulent spray jet flame using filtered tabulated chemistry. J. Combust. 2020, 2020, 2764523. [Google Scholar] [CrossRef]
- Akkari, N. A velocity potential preserving reduced order approach for the incompressible and unsteady Navier–Stokes equations. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Holmes, P.; Lumley, J.; Berkooz, G.; Rowley, C. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 358–377. [Google Scholar]
- Sirovich, L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling. Q. Appl. Math. 1987, 45, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G. Model order reduction in fluid dynamics: Challenges and perspectives. In Reduced Order Methods for Modeling and Computational Reduction; Quarteroni, A., Rozza, G., Eds.; Springer: Berlin, Germany, 2014; Volume 9, pp. 235–274. [Google Scholar]
- Balajewicz, M.; Tezaur, I.; Dowell, E. Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the incompressible Navier–Stokes equations. J. Comput. Phys. 2016, 321, 224–241. [Google Scholar] [CrossRef] [Green Version]
- Baiges, J.; Codina, R.; Idelsohn, S. Reduced-order subscales for POD models. Comput. Methods Appl. Mech. Eng. 2015, 291, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Akkari, N.; Casenave, F.; Moureau, V. Time Stable Reduced Order Modeling by an Enhanced Reduced Order Basis of the Turbulent and Incompressible 3D Navier Stokes Equations. Math. Comput. Appl. 2019, 24, 45. [Google Scholar] [CrossRef] [Green Version]
- Karatzas, E.N.; Stabile, G.; Nouveau, L.; Scovazzi, G.; Rozza, G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Comput. Methods Appl. Mech. Eng. 2019, 347, 568–587. [Google Scholar] [CrossRef] [Green Version]
- Hay, A.; Borggaard, J.; Akhtar, I.; Pelletier, D. Reduced-order models for parameter dependent geometries based on shape sensitivity analysis. J. Comput. Phys. 2010, 229, 1327–1352. [Google Scholar] [CrossRef] [Green Version]
- Wahba, G. Spline Models for Observational Data; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1990. [Google Scholar] [CrossRef]
- Williams, C.K.I. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond. In Learning in Graphical Models; Jordan, M.I., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 599–621. [Google Scholar] [CrossRef]
- Kawai, S.; Shimoyama, K. Kriging-model-based uncertainty quantification in computational fluid dynamics. In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 16–20 June 2014; p. 2737. [Google Scholar]
- Duchaine, F.; Morel, T.; Gicquel, L. Computational-fluid-dynamics-based kriging optimization tool for aeronautical combustion chambers. AIAA J. 2009, 47, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Margheri, L.; Sagaut, P. A hybrid anchored-ANOVA–POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations. J. Comput. Phys. 2016, 324, 137–173. [Google Scholar] [CrossRef]
- Gundersen, K.; Oleynik, A.; Blaser, N.; Alendal, G. Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations. Phys. Fluids 2021, 33, 017119. [Google Scholar] [CrossRef]
- Kingma, D.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114. [Google Scholar]
- Jimenez Rezende, D.; Mohamed, S.; Wierstra, D. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. arXiv 2014, arXiv:1401.4082. [Google Scholar]
- Everson, R.; Sirovich, L. Karhunen Loeve procedure for gappy data. J. Opt. Soc. Am. A 1995, 8, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Bui-Thanh, T.; Damodaran, M.; Willcox, K. Aerodynamic data reconstruction and inverse design using Proper Orthogonal Decomposition. AIAA J. 2004, 42, 1505–1516. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Tang, J.; Huang, H.; Lu, X.Y. Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids 2020, 32, 025105. [Google Scholar] [CrossRef]
- Beck, A.; Flad, D.; Munz, C.D. Deep neural networks for data-driven LES closure models. J. Comput. Phys. 2019, 398, 108910. [Google Scholar] [CrossRef] [Green Version]
- De Nayer, G.; Schmidt, S.; Wood, J.N.; Breuer, M. Enhanced injection method for synthetically generated turbulence within the flow domain of eddy-resolving simulations. Comput. Math. Appl. 2018, 75, 2338–2355. [Google Scholar] [CrossRef] [Green Version]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 25 September 2021).
- Xiang, M.; Zabaras, N. Kernel principal component analysis for stochastic input model generation. J. Comput. Phys. 2011, 230, 7311–7331. [Google Scholar]
- Soize, C. Random matrix models and nonparametric method for uncertainty quantification. In Handbook for Uncertainty Quantification; Ghanem, R., Higdon, D., Owhadi, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1, pp. 219–287. [Google Scholar] [CrossRef] [Green Version]
- Farhat, C.; Tezaur, R.; Chapman, T.; Avery, P.; Soize, C. Feasible Probabilistic Learning Method for Model-Form Uncertainty Quantification in Vibration Analysis. AIAA J. 2019, 57, 1–14. [Google Scholar] [CrossRef]
- Rezende, D.; Mohamed, S. Variational Inference with Normalizing Flows. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Bach, F., Blei, D., Eds.; PMLR: Lille, France, 2015; Volume 37, pp. 1530–1538. [Google Scholar]
- Caterini, A.; Doucet, A.; Sejdinovic, D. Hamiltonian Variational Auto-Encoder. arXiv 2018, arXiv:1805.11328. [Google Scholar]
- Neal, R. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Rathi, Y.; Dambreville, S.; Tannenbaum, A. Statistical Shape Analysis using Kernel PCA. Proc. SPIE—Int. Soc. Opt. Eng. 2006, 6064. [Google Scholar] [CrossRef]
- Kwok, J.Y.; Tsang, I.H. The pre-image problem in kernel methods. IEEE Trans. Neural Netw. 2004, 15, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakir, G.; Weston, J.; Schölkopf, B.; Thrun, S.; Saul, L. Learning to Find Pre-Images. Adv. Neural Inf. Process. Syst. 2004, 16, 449–456. [Google Scholar]
- Mika, S.; Schölkopf, B.; Smola, A.; Müller, K.R.; Scholz, M.; Rätsch, G. Kernel PCA and De-Noising in Feature Spaces. In Proceedings of the 12th Annual Conference on Neural Information Processing Systems, NIPS 1998, Denver, CO, USA, 30 November–5 December 1998. [Google Scholar]
- Partaourides, H.; Chatzis, S. Asymmetric Deep Generative Models. Neurocomputing 2017, 241, 90–96. [Google Scholar] [CrossRef]
- Berger, V.; Sebag, M. Variational Auto-Encoder: Not all failures are equal. hal-02497248. 2020. Available online: https://hal.inria.fr/hal-02497248 (accessed on 25 September 2021).
- Amsallem, D.; Farhat, C. Stabilization of projection based reduced order models. Int. J. Numer. Methods Eng. 2012, 91, 358–377. [Google Scholar] [CrossRef]
- Rowley, C.; Colonius, T.; Murray, R. Model Reduction for compressible flows using POD and Galerkin projection. Phys. D Nonlinear Phenom. 2004, 189, 115–129. [Google Scholar] [CrossRef]
- Lee, K.; Carlberg, K. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 2020, 404, 108973. [Google Scholar] [CrossRef] [Green Version]
- Moureau, V.; Domingo, P.; Vervisch, L. Design of a massively parallel CFD code for complex geometries. Comptes Rendus Mécanique 2011, 339, 141–148. [Google Scholar] [CrossRef]
- Moureau, V.; Domingo, P.; Vervisch, L. From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combust. Flame 2011, 158, 1340–1357. [Google Scholar] [CrossRef]
- Malandain, M.; Maheu, N.; Moureau, V. Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines. J. Comput. Phys. 2013, 238, 32–47. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkari, N.; Casenave, F.; Daniel, T.; Ryckelynck, D. Data-Targeted Prior Distribution for Variational AutoEncoder. Fluids 2021, 6, 343. https://doi.org/10.3390/fluids6100343
Akkari N, Casenave F, Daniel T, Ryckelynck D. Data-Targeted Prior Distribution for Variational AutoEncoder. Fluids. 2021; 6(10):343. https://doi.org/10.3390/fluids6100343
Chicago/Turabian StyleAkkari, Nissrine, Fabien Casenave, Thomas Daniel, and David Ryckelynck. 2021. "Data-Targeted Prior Distribution for Variational AutoEncoder" Fluids 6, no. 10: 343. https://doi.org/10.3390/fluids6100343
APA StyleAkkari, N., Casenave, F., Daniel, T., & Ryckelynck, D. (2021). Data-Targeted Prior Distribution for Variational AutoEncoder. Fluids, 6(10), 343. https://doi.org/10.3390/fluids6100343