Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Procedures
2.2. Test Specimen
2.3. Parameter Definition
2.4. Validation
3. Results and Discussion
3.1. Effect of VG on Heat Transfer
3.2. Effect of VG on Friction Factor
3.3. Effect of VG on Thermal–Hydraulic Performance
3.4. Effect of VG on the Economic Value of Improved Heat Transfer (CBR)
3.5. Flow Visualization
4. Uncertainty Analysis (Error)
4.1. Heat Transfer Uncertainty
4.2. Uncertainty of Pressure Drop
5. Conclusions
- The holes in the VG slightly reduce the heat transfer rate, which can be indicated by a decrease in the Nusselt number ratio of up to 9 to 10%.
- The holes in the VG, in addition to slightly reducing the heat transfer rate, are also able to reduce the flow resistance, which can be indicated by a decrease in the friction factor ratio of up to 11 to 14.5%.
- The thermal–hydraulic performance expressed as TEF with holes in the VG was slightly decreased by about 2.1% from that of with holes.
- From an economic point of view, the use of perforated VGs can reduce the economy of a heat exchange system. This can be indicated by a threefold increase in CBR at the highest flow velocity for the three pairs of VGs.
- The flow visualization showed the formation of a longitudinal vortex in the cross-section plane downstream of the VG.
- The results of the study also showed that the data uncertainty obtained from calculating the heat rate and pressure drop was very low, with an average error of below 2% and 4% for Nu and ΔP, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | tube surface area (m2) |
W | test section width (m) |
H | test section height (m) |
D | tube diameter (m) |
k | fluid thermal conductivity (W/mK) |
Dh | hydraulic diameter (m) |
density of air (kg/m3) | |
Cp | fluid specific heat (J/kgK) |
L | length of the test specimen plate (m) |
Q | heat transfer from the tube surface to the fluid flow (W) |
h | convection heat transfer coefficient (W/m2 K) |
Nu | Nusselt number (−) |
Nu0 | Nusselt number for baseline (−) |
LMTD | log-mean temperature difference (K) |
Tin | inlet temperature of the fluid (K) |
Tout | outlet temperature of the fluid (K) |
Tw | wall temperature of the tube (K) |
V | air flow velocity (m/s) |
fluid mass rate (kg/s) | |
ΔP | pressure drop along the flow (Pa) |
f | friction factor (−) |
f0 | friction factor for baseline (−) |
N | number of data (−) |
average standard deviation (−) | |
absolute error (−) | |
TEF | thermal enhancement factor |
CBR | cost–benefit ratio |
VG | vortex generator |
LV | longitudinal vortex |
TV | transverse vortex |
RW | rectangular winglet |
DW | delta winglet |
CDW | concave delta winglet |
PDW | perforated delta winglet |
PCDW | perforated concave delta winglet |
RWP | rectangular winglet pair |
DWP | delta winglet pair |
CDWP | concave delta winglet pair |
PDWP | perforated delta winglet pair |
PCDWP | perforated concave delta winglet pair |
References
- Tepe, A.Ü. Heat transfer enhancement of fin-tube heat exchangers using punched triangular ramp vortex generator on the fin surface. Int. J. Heat Mass Transf. 2021, 174, 244–260. [Google Scholar] [CrossRef]
- Ekiciler, R.; Çetinkaya, M.S.A.; Arslan, K. Convective heat transfer investigation of a confined air slot-jet impingement cooling on corrugated surfaces with different wave shapes. J. Heat Transf. 2019, 141, 1–23. [Google Scholar] [CrossRef]
- Tepe, A.Ü.; Arslan, K.; Yetisken, Y.; Uysal, Ü. Effects of extended jet holes to heat transfer and flow characteristics of the jet impingement cooling. J. Heat Transf. 2019, 141, 1–14. [Google Scholar] [CrossRef]
- Tepea, A.Ü.; Uysalb, Ü.; Yetişkenc, Y.; Arslanc, K. Jet impingement cooling on a rib-roughened surface using extended jet holes. Appl. Therm. Eng. 2020, 178, 115601. [Google Scholar] [CrossRef]
- Huisseune, H.; T’Joen, C.; De Jaeger, P.; Ameel, B.; De Schampheleire, S.; De Paepe, M. Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int. J. Heat Mass Transf. 2013, 56, 475–487. [Google Scholar] [CrossRef]
- Li, J.; Dang, C.; Hihara, E. Heat transfer enhancement in a parallel, finless heat exchanger using a longitudinal vortex generator, part A: Numerical investigation. Int. J. Heat Mass Transf. 2019, 128, 87–97. [Google Scholar] [CrossRef]
- Li, J.; Dang, C.; Hihara, E. Heat transfer enhancement in a parallel, finless heat exchanger using a longitudinal vortex generator, part B: Experimental investigation on the performance of finless and fin-tube heat exchangers. Int. J. Heat Mass Transf. 2019, 128, 66–75. [Google Scholar] [CrossRef]
- Chai, L.; Tassou, S.A. A review of airside heat transfer augmentation with vortex generators on heat transfer surface. Energies 2018, 11, 2737. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Wu, S.; Song, K.; Hua, L.; Wang, L. Thermo-hydraulic performance optimization of wavy fin heat exchanger by combining delta winglet vortex generators. Appl. Therm. Eng. 2019, 163, 114343. [Google Scholar] [CrossRef]
- Wu, H.; Ting, D.S.-K.; Ray, S. The effect of delta winglet attack angle on the heat transfer performance of a flat surface. Int. J. Heat Mass Transf. 2018, 120, 117–126. [Google Scholar] [CrossRef]
- Da Silva, F.A.S.; Dezan, D.J.; Pantaleão, A.V.; Salviano, L.O. Longitudinal vortex generator applied to heat transfer enhancement of a flat plat solar water heater. Appl. Therm. Eng. 2019, 158, 113790. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Shan, F.; Liu, Z.; Liu, W. Effect of longitudinal vortex generator on the heat transfer enhancement of a circular tube. Appl. Therm. Eng. 2019, 148, 1018–1028. [Google Scholar] [CrossRef]
- Modi, A.J.; Rathod, M.K. Comparative study of heat transfer enhancement and pressure drop for fin-and-circular tube compact heat exchangers with sinusoidal wavy and elliptical curved rectangular winglet vortex generator. Int. J. Heat Mass Transf. 2019, 141, 310–326. [Google Scholar] [CrossRef]
- Lu, G.; Zhai, X. Effects of curved vortex generators on the air-side performance of fin-and tube heat exchangers. Int. J. Therm. Sci. 2019, 136, 509–518. [Google Scholar] [CrossRef]
- Promvonge, P.; Skullong, S. Thermo-hydraulic performance in heat exchanger tube with V-shaped winglet vortex generator. Appl. Therm. Eng. 2020, 164, 114424. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, X.; Zhang, Y.; Feng, Y.; Li, Y.; Meng, H.; Zhang, J.; Wu, J. Heat transfer enhancement by streamlined winglet pair vortex generators for helical channel with rectangular cross section. Chem. Eng. Process. Process. Intensif. 2020, 147, 107788. [Google Scholar] [CrossRef]
- Chimres, N.; Wongwises, S. A critical review of the prominent method of heat transfer enhancement for the fin-and-tube heat exchanger by interrupted fin surface: The vortex generators approach. Int. J. Air-Cond. Refrig. 2018, 26, 1830001. [Google Scholar] [CrossRef]
- Awais, M.; Bhuiyan, A.A. Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): A parametric study. Int. J. Therm. Sci. 2019, 140, 154–166. [Google Scholar] [CrossRef]
- Zeeshan, M.; Nath, S.; Bhanja, D.; Das, A. Numerical investigation for the optimal placements of rectangular vortex generators for improved thermal performance of fin-and-tube heat exchangers. Appl. Therm. Eng. 2018, 136, 589–601. [Google Scholar] [CrossRef]
- Singh, S.; Sørensen, K.; Condra, T. Investigation of vortex generator enhanced double-fin and tube heat exchanger. J. Heat Transf. 2018, 141, 21802–21813. [Google Scholar] [CrossRef]
- Li, M.J.; Zhang, H.; Zhang, J.; Mu, Y.T.; Tian, E.; Dan, D.; Zhang, X.D.; Tao, W.Q. Experimental and numerical study and comparison of performance for wavy fin and a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat exchangers. Appl. Therm. Eng. 2018, 133, 298–307. [Google Scholar] [CrossRef]
- Qian, Z.Q.; Wang, Q.; Cheng, J.L. Analysis of heat and resistance performance of plate fin-and-tube heat exchanger with rectangle-winglet vortex generator. Int. J. Heat Mass Transf. 2018, 124, 1198–1211. [Google Scholar] [CrossRef]
- Naik, H.; Tiwari, S. Effect of winglet location on performance of fin-tube heat exchangers with inline tube arrangement. Int. J. Heat Mass Transf. 2018, 125, 248–261. [Google Scholar] [CrossRef]
- Md Salleh, M.F.; Gholami, A.; Wahid, M.A. Numerical evaluation of thermal hydraulic performance in fin-and-tube heat exchangers with various vortex generator geometries arranged in common-flow-down or common-flow-up. J. Heat Transf. 2018, 141, 21801–21813. [Google Scholar] [CrossRef]
- Lu, G.F.; Zhai, X.Q. Analysis on heat transfer and pressure drop of fin-and-oval-tube heat exchangers with tear-drop delta vortex generators. Int. J. Heat Mass Transf. 2018, 127, 1054–1063. [Google Scholar] [CrossRef]
- Song, K.W.; Tagawa, T. The optimal arrangement of vortex generators for best heat transfer enhancement in flat-tube-fin heat exchanger. Int. J. Therm. Sci. 2018, 132, 355–367. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Mishra, D.P. Effect of winglet location on heat transfer of a fin-and- tube heat exchanger. Appl. Therm. Eng. 2017, 116, 528–540. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, R.P. Numerical investigation of heat transfer enhancement using detached vortex generators in fin-and-tube heat exchangers. Comp. Therm. Sci. Int. J. 2017, 9, 93–107. [Google Scholar] [CrossRef]
- Song, K.; Wang, L.; Hu, Y.; Liu, Q. Flow symmetry and heat transfer characteristics of winglet vortex generators arranged in common flow up configuration. Symmetry 2020, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Syaiful, S.A.; Utomo, T.S.; Yurianto; Wulandari, R. Numerical analysis of heat and fluid flow characteristics of airflow inside rectangular channel with presence of perforated concave delta winglet vortex generators. Int. J. Heat Technol. 2019, 37, 1059–1070. [Google Scholar] [CrossRef] [Green Version]
- Hendraswari, M.P.; Utomo, T.S.; Soetanto, M.F. Heat transfer enhancement inside rectangular channel by means of vortex generated by perforated concave rectangular winglets. Fluids 2021, 6, 43. [Google Scholar] [CrossRef]
- Effendi, Y.; Prayogo, A.; Syaiful; Djaeni, M.; Yohana, E. Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel. Exp. Heat Transf. 2021, 34, 1–24. [Google Scholar] [CrossRef]
- Oneissi, M.; Habchi, C.; Russeil, S.; Lemenand, T.; Bougeard, D. Heat transfer enhancement of inclined projected winglet pair vortex generators with protrusions. Int. J. Therm. Sci. 2018, 134, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.W.; Khorasani, S.; Moria, H.; Pourhedayat, S.; Dizaji, H.S. Profit and efficiency boost of triangular vortex-generators by novel techniques. Int. J. Heat Mass Transf. 2020, 156, 119842. [Google Scholar] [CrossRef]
- Han, Z.; Xu, Z.; Wang, J. Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole. Int. J. Heat Mass Transf. 2018, 126, 993–1001. [Google Scholar] [CrossRef]
- Boukhadia, K.; Ameura, H.; Sahel, D.; Bozit, M. Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger. Int. J. Therm. Sci. 2018, 126, 172–180. [Google Scholar] [CrossRef]
- Chidanand, K.; Mangrulkar; Dhoble, A.S.; Chamoli, S.; Gupta, A.; Gawande, V.B. Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers. Renew. Sustain. Energy Rev. 2019, 113, 109220. [Google Scholar]
- Gupta, A.; Roy, A.; Gupta, S.; Gupta, M. Numerical investigation towards implementation of punched winglet as vortex generator for performance improvement of a fin-and-tube heat exchanger. Int. J. Heat Mass Transf. 2019, 149, 119171. [Google Scholar] [CrossRef]
- Arora, A.; Subbarao, P.M.V.; Agarwal, R.S. Development of parametric space for the vortex generator location for improving thermal compactness of an existing inline fin and tube heat exchanger. Appl. Therm. Eng. 2016, 98, 727–742. [Google Scholar] [CrossRef]
- Doebelin, E.O. Measurement Systems: Application and Design, 4th ed.; McGraw-Hill: Singapore, 1990. [Google Scholar]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
Data to | Tw1 (°C) | Tw2 (°C) | Tw3 (°C) | Tw4 (°C) | Tw5 (°C) | Tw6 (°C) |
---|---|---|---|---|---|---|
1 | 49.191 | 51.214 | 48.323 | 49.769 | 47.802 | 51.271 |
2 | 49.183 | 51.177 | 48.316 | 49.791 | 47.766 | 51.264 |
3 | 49.145 | 51.168 | 48.307 | 49.753 | 47.786 | 51.255 |
4 | 49.121 | 51.173 | 48.282 | 49.728 | 47.761 | 51.259 |
5 | 49.153 | 51.205 | 48.285 | 49.731 | 47.735 | 51.262 |
6 | 49.100 | 51.151 | 48.290 | 49.736 | 47.769 | 51.267 |
7 | 49.098 | 51.150 | 48.230 | 49.734 | 47.738 | 51.294 |
8 | 49.089 | 51.141 | 48.250 | 49.667 | 47.729 | 51.228 |
Number of Pair | Overall Error | |||
---|---|---|---|---|
DWP | CDWP | PDWP | PCDWP | |
1 | 1.05% | 0.60% | 1.69% | 0.90% |
2 | 0.67% | 0.75% | 0.77% | 0.74% |
3 | 1.12% | 1.15% | 0.85% | 0.91% |
Pressure Drop (in H2O) | |||
---|---|---|---|
Data to | ΔP | Data to | ΔP |
1 | 0.013 | 16 | 0.012 |
2 | 0.013 | 17 | 0.013 |
3 | 0.013 | 18 | 0.012 |
4 | 0.013 | 19 | 0.012 |
5 | 0.012 | 20 | 0.013 |
6 | 0.013 | 21 | 0.013 |
7 | 0.013 | 22 | 0.012 |
8 | 0.012 | 23 | 0.013 |
9 | 0.013 | 24 | 0.012 |
10 | 0.013 | 25 | 0.013 |
11 | 0.013 | 26 | 0.013 |
12 | 0.013 | 27 | 0.013 |
13 | 0.012 | 28 | 0.013 |
14 | 0.012 | 29 | 0.012 |
15 | 0.013 | 30 | 0.012 |
Number of Pair | Overall Error | |||
---|---|---|---|---|
DWP | CDWP | PDWP | PCDWP | |
1 | 3.52% | 2.90% | 3.74% | 3.56% |
2 | 2.41% | 1.50% | 3.32% | 2.61% |
3 | 0.87% | 1.10% | 2.11% | 1.91% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syaiful; Wahyuni, T.; Yunianto, B.; Sinaga, N. Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement. Fluids 2021, 6, 344. https://doi.org/10.3390/fluids6100344
Syaiful, Wahyuni T, Yunianto B, Sinaga N. Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement. Fluids. 2021; 6(10):344. https://doi.org/10.3390/fluids6100344
Chicago/Turabian StyleSyaiful, Tri Wahyuni, Bambang Yunianto, and Nazaruddin Sinaga. 2021. "Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement" Fluids 6, no. 10: 344. https://doi.org/10.3390/fluids6100344
APA StyleSyaiful, Wahyuni, T., Yunianto, B., & Sinaga, N. (2021). Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement. Fluids, 6(10), 344. https://doi.org/10.3390/fluids6100344