Experimental Characterization of the Flow Field around Oblong Bridge Piers
Abstract
:1. Introduction
2. Flow Field Experiments
2.1. Experimental Facility and Bridge Pier Models
2.2. Devices, Measured Variables and Instrumentation
2.3. Experimental Procedure
2.4. Hydraulic Conditions and Time Duration
3. Flow Field Characterization
4. Results and Discussion
4.1. Mean Velocities
4.2. Reynolds Shear Stresses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | Flume width |
Constant of log-law profile | |
D | Pier Model ( 14) |
Median grain size diameter | |
Froude number | |
g | Gravity acceleration |
h | Flow depth |
Roughness coefficient | |
L | Oblong bridge pier length |
Sample size | |
Q | Flow discharge |
R | Pier semi-cylindrical surface ratio |
Flow Reynolds number | |
Pier Reynolds number | |
U | Pier Model ( 11) |
u | Stream-wise velocity component |
Stream-wise velocity fluctuation | |
Shear velocity | |
V | Approach flow velocity |
v | Cross-wise velocity component |
Cross-wise velocity fluctuation | |
W | Oblong bridge pier width |
w | Vertical velocity component |
Vertical velocity fluctuation | |
x | Longitudinal axis |
y | Transversal axis |
z | Vertical axis |
Fluid kinematic viscosity | |
Sediment density | |
Standard deviation | |
Standard deviation of sediment particle sizes | |
Acoustic Doppler Velocimeter | |
Computational Fluid Dynamics | |
National Laboratory of Civil Engineering | |
Laser Doppler Velocimetry | |
Particle Image Velocimetry | |
Reynolds Shear Stresses ( and ) | |
Signal-to-Noise Ratio |
References
- Melville, B.W.; Coleman, S.E. Bridge Scour; Water Resources Publications, LLC: Highlands Ranch, CO, USA, 2000. [Google Scholar]
- Arneson, L.; Zevenbergen, L.; Lagasse, P.; Clopper, P. Evaluating Scour at Bridges; Technical Report; Federal Highway Administration: Fort Collins, CO, USA, 2012. [Google Scholar]
- Deng, L.; Wang, W.; Yu, Y. State-of-the-Art review on the causes and mechanisms of bridge collapse. J. Perform. Constr. Facil. 2016, 30, 04015005. [Google Scholar] [CrossRef]
- Flint, M.M.; Fringer, O.; Billington, S.L.; Freyberg, D.; Diffenbaugh, N.S. Historical analysis of hydraulic bridge collapses in the Continental United States. J. Infrastruct. Syst. 2017, 23, 04017005. [Google Scholar] [CrossRef] [Green Version]
- Proske, D. Bridge Collapse Frequencies Versus Failure Probabilities; Springer: Berlin, Germany, 2018. [Google Scholar]
- Ettema, R.; Constantinescu, G.; Melville, B.W. Flow-field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch. J. Hydraul. Eng. 2017, 143, 03117006. [Google Scholar] [CrossRef]
- Dargahi, B. The turbulent flow field around a circular cylinder. Exp. Fluids 1989, 8, 1–12. [Google Scholar] [CrossRef]
- Dey, S.; Raikar, R.V. Characteristics of horseshoe vortex in developing scour holes at piers. J. Hydraul. Eng. 2007, 133, 399–413. [Google Scholar] [CrossRef]
- Kumar, A.; Kothyari, U.C.; Raju, K.G.R. Flow structure and scour around circular compound bridge piers—A review. J. Hydro-Environ. Res. 2012, 6, 251–265. [Google Scholar] [CrossRef]
- Melville, B.W.; Raudkivi, A.J. Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 1977, 15, 373–380. [Google Scholar] [CrossRef]
- Dey, S. Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Sadhana 1995, 20, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Beheshti, A.A.; Ataie-Ashtiani, B. Experimental study of three-dimensional flow field around a complex bridge pier. J. Eng. Mech. 2010, 136, 143–154. [Google Scholar] [CrossRef]
- Beheshti, A.A.; Ataie-Ashtiani, B. Scour hole influence on turbulent flow field around complex bridge piers. Flow Turbul. Combust. 2016, 97, 451–474. [Google Scholar] [CrossRef]
- Devenport, W.J.; Simpson, R.L. Time-depeiident and time-averaged turbulence structure near the nose of a wing-body junction. J. Fluid Mech. 1990, 210, 23–55. [Google Scholar] [CrossRef]
- Said, N.M.; Mhiri, H.; Bournot, H.; Le Palec, G. Experimental and numerical modelling of the three-dimensional incompressible flow behaviour in the near wake of circular cylinders. J. Wind Eng. Ind. Aerodyn. 2008, 96, 471–502. [Google Scholar] [CrossRef]
- Apsilidis, N.; Diplas, P.; Dancey, C.L.; Bouratsis, P. Time-resolved flow dynamics and Reynolds number effects at a wall–cylinder junction. J. Fluid Mech. 2015, 776, 475–511. [Google Scholar] [CrossRef]
- Jenssen, U.; Manhart, M. Flow around a scoured bridge pier: A stereoscopic PIV analysis. Exp. Fluids 2020, 61, 1–18. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Aslani-Kordkandi, A. Flow field around single and tandem piers. Flow Turbul. Combust. 2013, 90, 471–490. [Google Scholar] [CrossRef]
- Link, O.; González, C.; Maldonado, M.; Escauriaza, C. Coherent structure dynamics and sediment particle motion around a cylindrical pier in developing scour holes. Acta Geophys. 2012, 60, 1689–1719. [Google Scholar] [CrossRef]
- Kirkil, G.; Constantinescu, G. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Phys. Fluids 2015, 27, 075102. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, Y.; Yang, Z. Influence of scour development on turbulent flow field in front of a bridge pier. Water 2020, 12, 2370. [Google Scholar] [CrossRef]
- Graf, W.; Yulistiyanto, B. Experiments on flow around a cylinder; the velocity and vorticity fields. J. Hydraul. Res. 1998, 36, 637–654. [Google Scholar] [CrossRef]
- Roulund, A.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 2005, 534, 351–401. [Google Scholar] [CrossRef]
- Vijayasree, B.; Eldho, T.; Mazumder, B. Turbulence statistics of flow causing scour around circular and oblong piers. J. Hydraul. Res. 2020, 58, 673–686. [Google Scholar] [CrossRef]
- Pasupuleti, L.N.; Timbadiya, P.V.; Patel, P.L. Flow Field Measurements Around Isolated, Staggered, and Tandem Piers on a Rigid Bed Channel. Int. J. Civ. Eng. 2021, 1–18. [Google Scholar]
- Chiew, Y.M.; Melville, B.W. Local scour around bridge piers. J. Hydraul. Res. 1987, 25, 15–26. [Google Scholar] [CrossRef]
- Bento, A.M.; Couto, L.; Viseu, T.; Pêgo, J.P. Image-Based Techniques for the Advanced Characterization of Scour around Bridge Piers in Laboratory. Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2018/15/e3sconf_riverflow2018_05066/e3sconf_riverflow2018_05066.html (accessed on 4 September 2021).
- Bento, A.M. Risk-Based Analysis of Bridge Scour Prediction. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2021. [Google Scholar]
- Lee, S.O.; Hong, S.H. Turbulence characteristics before and after scour upstream of a scaled-down bridge pier model. Water 2019, 11, 1900. [Google Scholar] [CrossRef] [Green Version]
- García, C.M.; Cantero, M.I.; Niño, Y.; García, M.H. Turbulence measurements with Acoustic Doppler Velocimeters. J. Hydraul. Eng. 2005, 131, 1062–1073. [Google Scholar] [CrossRef]
- Montero, V.G.G.; Romagnoli, M.; García, C.M.; Cantero, M.I.; Scacchi, G. Optimization of ADV sampling strategies using DNS of turbulent flow. J. Hydraul. Res. 2014, 52, 862–869. [Google Scholar] [CrossRef]
- Bento, A.M.; Pêgo, J.P.; Couto, L.; Viseu, T. Assessing the flow field around an oblong bridge pier. Vectrino acquisition time sensitivity analysis. Publ. Inst. Geophys. Pol. Acad. Sci. Geophys. Data Bases Process. Instrum. 2021, 434, 131–132. [Google Scholar] [CrossRef]
- Yang, S.Q.; Tan, S.K.; Lim, S.Y. Velocity distribution and dip-phenomenon in smooth uniform open channel flows. J. Hydraul. Eng. 2004, 130, 1179–1186. [Google Scholar] [CrossRef]
- Cardoso, A.H.; Graf, W.H.; Gust, G. Uniform flow in a smooth open channel. J. Hydraul. Res. 1989, 27, 603–616. [Google Scholar] [CrossRef]
- Kirkil, G.; Constantinescu, S.G.; Ettema, R. Coherent structures in the flow field around a circular cylinder with scour hole. J. Hydraul. Eng. 2008, 134, 572–587. [Google Scholar] [CrossRef]
- Chang, W.Y.; Constantinescu, G.; Lien, H.C.; Tsai, W.F.; Lai, J.S.; Loh, C.H. Flow structure around bridge piers of varying geometrical complexity. J. Hydraul. Eng. 2013, 139, 812–826. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, 2017. [Google Scholar] [CrossRef]
- Cardoso, A.H.; Cunha, L.V.d. Hidráulica Fluvial; Fundação Calouste Gulbenkian: Lisbon, Portugal, 1998. [Google Scholar]
- Nikora, V.; Nokes, R.; Veale, W.; Davidson, M.; Jirka, G. Large-scale turbulent structure of uniform shallow free-surface flows. Environ. Fluid Mech. 2007, 7, 159–172. [Google Scholar] [CrossRef]
- Ouro, P.; Juez, C.; Franca, M. Drivers for mass and momentum exchange between the main channel and river bank lateral cavities. Adv. Water Resour. 2020, 137, 103511. [Google Scholar] [CrossRef]
- Pandey, M.; Sharma, P.K.; Ahmad, Z.; Singh, U.K.; Karna, N. Three-dimensional velocity measurements around bridge piers in gravel bed. Mar. Georesources Geotechnol. 2017, 36, 663–676. [Google Scholar] [CrossRef]
- Raudkivi, A.J. Functional trends of scour at bridge piers. J. Hydraul. Eng. 1986, 112, 1–13. [Google Scholar] [CrossRef]
- Pizarro, A.; Manfreda, S.; Tubaldi, E. The science behind scour at bridge foundations: A review. Water 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Bernard, P.S.; Handler, R.A. Reynolds stress and the physics of turbulent momentum transport. J. Fluid Mech. 1990, 220, 99–124. [Google Scholar] [CrossRef] [Green Version]
- Carnacina, I.; Leonardi, N.; Pagliara, S. Characteristics of flow structure around cylindrical bridge piers in pressure-flow conditions. Water 2019, 11, 2240. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Chiew, Y.M.; Wei, M.; Hsieh, S.C. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int. J. Sediment Res. 2019, 34, 118–124. [Google Scholar] [CrossRef]
(-) | Q | h | V | ||||
---|---|---|---|---|---|---|---|
1U | 11 | 0.0927 | 0.1610 ± 3 × 10 | 0.2882 ± 6 × 10 | 0.1825 ± 8 × 10 | 46,200 ± 0.06 | 31,600 ± 0.7 |
1U | 11 | 0.0925 | 0.1628 ± 3 × 10 | 0.2849 ± 4 × 10 | 0.1784 ± 4 × 10 | 46,200 ± 0.02 | 31,200 ± 0.4 |
1D | 14 | 0.0927 | 0.1588 ± 5 × 10 | 0.2921 ± 9 × 10 | 0.1875 ± 1 × 10 | 46,200 ± 0.1 | 32,000 ± 1.0 |
1D | 14 | 0.0925 | 0.1579 ± 3 × 10 | 0.2937 ± 5 × 10 | 0.1896 ± 6 × 10 | 46,200 ± 0.05 | 32,200 ± 0.5 |
2U | 11 | 0.1244 ± 5 × 10 | 0.1952 ± 1 × 10 | 0.3187 ± 2 × 10 | 0.1665 ± 2 × 10 | 61,900 ± 0.2 | 34,900 ± 2.0 |
2U | 11 | 0.1237 ± 4 × 10 | 0.1486 ± 5 × 10 | 0.4164 ± 2x10 | 0.2856 ± 2 × 10 | 61,600 ± 0.18 | 45,600 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bento, A.M.; Viseu, T.; Pêgo, J.P.; Couto, L. Experimental Characterization of the Flow Field around Oblong Bridge Piers. Fluids 2021, 6, 370. https://doi.org/10.3390/fluids6110370
Bento AM, Viseu T, Pêgo JP, Couto L. Experimental Characterization of the Flow Field around Oblong Bridge Piers. Fluids. 2021; 6(11):370. https://doi.org/10.3390/fluids6110370
Chicago/Turabian StyleBento, Ana Margarida, Teresa Viseu, João Pedro Pêgo, and Lúcia Couto. 2021. "Experimental Characterization of the Flow Field around Oblong Bridge Piers" Fluids 6, no. 11: 370. https://doi.org/10.3390/fluids6110370
APA StyleBento, A. M., Viseu, T., Pêgo, J. P., & Couto, L. (2021). Experimental Characterization of the Flow Field around Oblong Bridge Piers. Fluids, 6(11), 370. https://doi.org/10.3390/fluids6110370