The Hydrodynamic Moment of a Floating Structure in Finite Flowing Water
Abstract
:1. Introduction
2. Experimental Design and Configuration
2.1. Experimental Configuration and Dynamic Moment Measurement
2.2. Dimensional Analysis and Parameter Design of the Floating Structure
3. Results and Discussion
3.1. Shape of the Floating Structure
3.2. Draft Depth
3.3. Relative Water Level Difference
3.4. Froude Number
4. Stepwise Regression Analyses and Validation of Mf
4.1. Regression Analysis of Mf
4.2. Verification and Error Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
a | Height of the structure |
B | Width of the structure |
Fr2 | Froude number: Fr2 = v2/gH |
g | Gravitational constant of acceleration |
H | Upstream water depth |
H′ | Downstream water depth |
h | Draft of the structure |
L | Length of the structure |
q | Discharge per width of flow |
R2 | Coefficient of determination |
v | Average flow velocity |
ΔH | Water level difference |
ρ | Water density |
AMCC | Adjusted multiple correlation coefficient |
SEE | Standard error of estimation |
References
- Zhang, Q.; Xie, L.H.; Zhou, J. Design of floating gate for overhaul of navigable drainage sluice in the old port of Jin-qing. Water Resour. Plan. Des. 2013, 6, 80–82. [Google Scholar]
- Olyaie, E.; Banejad, H.; Chau, K.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess. 2015, 187, 189. [Google Scholar] [CrossRef]
- Pu, J.H.; Pandey, M.; Hanmaiahgari, P.R. Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows. J. Hydro-Environ. Res. 2020, 32, 17–25. [Google Scholar] [CrossRef]
- Pu, J.H. Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ. Fluid Mech. 2018, 19, 785–800. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Hong, C. Characteristics of wave exciting forces on a very large floating structure with submerged-plate. J. Mech. Sci. Technol. 2005, 11, 2061–2067. [Google Scholar] [CrossRef]
- Venugopal, V.; Varyani, K.S.; Barltrop, N.D.P. Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Eng. 2006, 33, 1669–1704. [Google Scholar] [CrossRef]
- Roy, P.D.; Ghosh, S. Wave force on vertically submerged circular thin plate in shallow water. Ocean Eng. 2006, 33, 1935–1953. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Seiffert, B.; Ertekin, R.C. Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part II: Deck with girders. Coast. Eng. 2014, 88, 210–228. [Google Scholar] [CrossRef]
- Seiffert, B.; Hayatdavoodi, M.; Ertekin, R.C. Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Flat plate. Coast. Eng. 2014, 88, 194–209. [Google Scholar] [CrossRef]
- Xing, D.L. Research on hydrodynamic performance of floating bodies in confined zone. J. Dalian Univ. Technol. 1993, 3, 351–355. [Google Scholar]
- Xing, D.L.; Deng, Y.P.; Zhou, M. Experimental research for added mass of cylinders with reflected boundary condition. J. Dalian Univ. Technol. 1998, 4, 107–111. [Google Scholar]
- Wang, S.; Fu, Z.F.; Cui, Z.; Chen, Y.J. Analysis of the influencing factors of overturning moment on the floating structure surrounded with flowing water. J. Hohai Univ. 2018, 46, 66–71. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, S.; Fu, Z.F. Influence of mesh scale on hydrodynamic characteristics of floating body. Water Resour. Power 2016, 12, 101–105. [Google Scholar]
- Fu, Z.F.; Yin, X.; Gu, X.F. Hydraulic characteristics of floating sluices subsiding and buoying in flowing water. Adv. Water Resour. 2014, 5, 24–27. [Google Scholar] [CrossRef]
- Lu, X.; Wang, K. Modeling a solitary wave interaction with a fixed floating body using an integrated analytical–numerical approach. Ocean Eng. 2015, 109, 691–704. [Google Scholar] [CrossRef]
- Rodrigues, J.M.; Guedes, S.C. A generalized adaptive mesh pressure integration technique applied to progressive flooding of floating bodies in still water. Ocean Eng. 2015, 110, 140–151. [Google Scholar] [CrossRef]
- Cui, Z.; Fu, Z.F.; Chen, Y.J. Explore the flow characteristics of floating structure based on the orthogonal design method. Eng. J. Wuhan Univ. 2018, 6, 471–477. [Google Scholar] [CrossRef]
- Cui, Z.; Fu, Z.F.; Wang, J. Sensitivity analysis of influencing factors of hydraulic characteristics of floating structure in finite flowing water. Eng. J. Wuhan Univ. 2018, 11, 957–962. [Google Scholar] [CrossRef]
- Fu, Z.F.; Yan, Z.M. Stability analysis of a new floating body brake. J. Hydraulics. Eng. 2005, 8, 1014–1018. [Google Scholar] [CrossRef]
- Venugopal, V.; Varyani, K.S.; Westlake, P.C. Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol. 2009, 223, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Rey, V.; Touboul, J.; Sous, D. Effect of a Submerged Plate on the Near-bed Dynamics under Incoming Waves in Deep Water Conditions. Appl. Ocean Res. 2015, 53, 67–74. [Google Scholar] [CrossRef]
- Johnson, H.K.; Karambas, T.V.; Avgeris, I. Modeling of Waves and Currents around Submerged Breakwaters. Coast. Eng. 2005, 52, 949–969. [Google Scholar] [CrossRef]
- Wan, Z.N.; Zhai, G.G.; Cheng, Y. Prediction on hydro-elastic responses of very large floating structure on the sea. J. Harbin. Eng. Univ. 2014, 10, 1189–1194. [Google Scholar] [CrossRef]
- Zhang, L.P. Study on Hydraulic Characteristics of Floating Sluice Localization Process; Hohai University: Nanjing, China, 2007. [Google Scholar]
- Rey, V.; Touboul, J. Forces and moment on a horizontal plate due to regular and irregular waves in the presence of current. Appl. Ocean Res. 2011, 33, 88–99. [Google Scholar] [CrossRef]
- Pu, J.H. Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluids 2021, 6, 86. [Google Scholar] [CrossRef]
- Pu, J.H.; Wei, J.; Huang, Y.F. Velocity distribution and 3D turbulence characteristic analysis for flow over water-worked rough bed. Water 2017, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, M. Hydrodynamic coefficients induced by waves and currents for submerged circular cylinder. Procedia Eng. 2010, 4, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Fu, Z.F.; Dai, W.H.; Lai, Z.Q. Submerged fixed floating structure under the action of surface current. Water 2018, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Goring, D.G.; Nikora, V.I. Despiking acoustic doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Blanckaert, K.; Lemmin, U. Means of noise reduction in acoustic turbulence measurements. J. Hydraul. Res. 2006, 44, 1–15. [Google Scholar] [CrossRef]
a/m | B/m | h/m | q/(m2 s−1) | H′/m | |||
---|---|---|---|---|---|---|---|
0.10 | 0.10 0.20 0.30 0.40 | 0.02 | 0.05 | 0.18 | 0.20 | 0.22 | 0.24 |
0.06 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.07 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.08 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.04 | 0.05 | 0.18 | 0.20 | 0.22 | 0.24 | ||
0.06 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.07 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.08 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.06 | 0.05 | 0.18 | 0.20 | 0.22 | 0.24 | ||
0.06 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.07 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.08 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.08 | 0.05 | 0.18 | 0.20 | 0.22 | 0.24 | ||
0.06 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.07 | 0.18 | 0.20 | 0.22 | 0.24 | |||
0.08 | 0.18 | 0.20 | 0.22 | 0.24 |
Independent Variable | Nonstandardized Coefficients | T | Sig. | Coefficient 95% Confidence Interval | Collinear Statistics | |||
---|---|---|---|---|---|---|---|---|
Coefficient | Standard Error | Lower Limit | Upper Limit | Tolerance | VIF | |||
Constant | −0.001 | 0.000 | −1.73 | 0.08 | −0.001 | 0.000 | ||
BΔH/aH′ | 0.045 | 0.002 | 19.99 | 0.00 | 0.040 | 0.049 | 0.66 | 1.51 |
BFr2/a | 0.036 | 0.002 | 15.73 | 0.00 | 0.031 | 0.040 | 0.51 | 1.97 |
Δh | −0.001 | 0.000 | −2.21 | 0.00 | 0.000 | 0.000 | 0.73 | 1.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Pan, S.-Y.; Chen, Y.-J. The Hydrodynamic Moment of a Floating Structure in Finite Flowing Water. Fluids 2021, 6, 307. https://doi.org/10.3390/fluids6090307
Cui Z, Pan S-Y, Chen Y-J. The Hydrodynamic Moment of a Floating Structure in Finite Flowing Water. Fluids. 2021; 6(9):307. https://doi.org/10.3390/fluids6090307
Chicago/Turabian StyleCui, Zhen, Shi-Yang Pan, and Yue-Jun Chen. 2021. "The Hydrodynamic Moment of a Floating Structure in Finite Flowing Water" Fluids 6, no. 9: 307. https://doi.org/10.3390/fluids6090307
APA StyleCui, Z., Pan, S. -Y., & Chen, Y. -J. (2021). The Hydrodynamic Moment of a Floating Structure in Finite Flowing Water. Fluids, 6(9), 307. https://doi.org/10.3390/fluids6090307