A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder
Abstract
:1. Introduction
2. Experimental Details
2.1. Experimental Instrumentations
2.2. Bed Settings
2.3. Experimental Conditions and Measuring Stations
2.4. ADV System and Data Collection Procedure
3. Results and Discussion
3.1. Mean Velocities
3.2. Reynolds Normal Stress (RNS) Distribution
3.3. Reynolds Shear Stress (RSS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tachie, M.F.; Bergstrom, D.J.; Yang, Z.; Fang, X.; Wang, B.-C. Highly-disturbed turbulent flow in a square channel with V-shaped ribs on one wall. Int. J. Heat Fluid Flow 2015, 56, 182–197. [Google Scholar] [CrossRef]
- Tsikata, J.M.; Tachie, M.F.; Katopodis, C. Open-channel turbulent flow through bar racks. J. Hydraul. Res. 2014, 52, 630–643. [Google Scholar] [CrossRef]
- Balachandar, R.; Bhuiyan, F. Higher-Order Moments of Velocity Fluctuations in an Open-Channel Flow with Large Bottom Roughness. J. Hydraul. Eng. 2007, 133, 77–87. [Google Scholar] [CrossRef]
- Djenidi, L.; Antonia, R.A.; Amielh, M.; Anselmet, F. A turbulent boundary layer over a two-dimensional rough wall. Exp. Fluids 2008, 44, 37–47. [Google Scholar] [CrossRef]
- Krogstad, P.Å.; Andersson, H.I.; Bakken, O.M.; Ashrafian, A. An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 2005, 530, 327–352. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, H. On the impacts of coarse-scale models of realistic roughness on a forward-facing step turbulent flow. Int. J. Heat Fluid Flow 2013, 40, 15–31. [Google Scholar] [CrossRef]
- Ren, H.; Wu, Y. Turbulent boundary layers over smooth and rough forward-facing steps. Phys. Fluids 2011, 23, 045102. [Google Scholar] [CrossRef]
- Robert, A.; Roy, A.G.; Serres, B. De Turbulence at a roughness transition in a depth limited flow over a gravel bed. Geomorphology 1996, 16, 175–187. [Google Scholar] [CrossRef]
- Bigillon, F.; Nino, Y.; Garcia, M. Measurements of turbulence characteristics in an open-channel flow over a transitionally-rough bed using particle image velocimetry. Exp. Fluids 2006, 41, 857–867. [Google Scholar] [CrossRef]
- Bergstrom, D.J.; Kotey, N.A.; Tachie, M.F. The effects of surface roughness on the mean velocity profile in a turbulent boundary layer. J. Fluids Eng. Trans. ASME 2002, 124, 664–670. [Google Scholar] [CrossRef]
- Volino, R.J.; Schultz, M.P.; Flack, K.A. Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 2009, 635, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Bomminayuni, S.; Stoesser, T. Turbulence Statistics in an Open-Channel Flow over a Rough Bed. J. Hydraul. Eng. 2011, 137, 1347–1358. [Google Scholar] [CrossRef]
- Yuan, J.; Piomelli, U. Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 2014, 760, 1–12. [Google Scholar] [CrossRef]
- Essel, E.E.; Tachie, M.F. Roughness effects on turbulent flow downstream of a backward facing step. Flow, Turbul. Combust. 2015, 94, 125–153. [Google Scholar] [CrossRef]
- Wu, W.; Piomelli, U. Effects of surface roughness on a separating turbulent boundary layer. J. Fluid Mech. 2018, 841, 552–580. [Google Scholar] [CrossRef]
- Agbaglah, G.; Mavriplis, C. Three-dimensional wakes behind cylinders of square and circular cross-section: Early and long-time dynamics. J. Fluid Mech. 2019, 870, 419–432. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015, 109, 7–13. [Google Scholar] [CrossRef]
- Cao, S.; Ozono, S.; Tamura, Y.; Ge, Y.; Kikugawa, H. Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder. J. Fluids Struct. 2010, 26, 685–702. [Google Scholar] [CrossRef]
- Cao, S.; Ozono, S.; Hirano, K.; Tamura, Y. Vortex shedding and aerodynamic forces on a circular cylinder in linear shear flow at subcritical Reynolds number. J. Fluids Struct. 2007, 23, 703–714. [Google Scholar] [CrossRef]
- Akoz, M.S. Flow structures downstream of the horizontal cylinder laid on a plane surface. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 397–413. [Google Scholar] [CrossRef]
- Gu, F.; Wang, J.S.; Qiao, X.Q.; Huang, Z. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates. J. Fluids Struct. 2012, 28, 263–278. [Google Scholar] [CrossRef]
- Ikegaya, N.; Morishige, S.; Matsukura, Y.; Onishi, N.; Hagishima, A. Experimental study on the interaction between turbulent boundary layer and wake behind various types of two-dimensional cylinders. J. Wind Eng. Ind. Aerodyn. 2020, 204, 104250. [Google Scholar] [CrossRef]
- Akoz, M.S.; Sahin, B.; Akilli, H. Flow characteristic of the horizontal cylinder placed on the plane boundary. Flow Meas. Instrum. 2010, 21, 476–487. [Google Scholar] [CrossRef]
- Kirkgoz, M.S.; Oner, A.A.; Akoz, M.S. Numerical modeling of interaction of a current with a circular cylinder near a rigid bed. Adv. Eng. Softw. 2009, 40, 1191–1199. [Google Scholar] [CrossRef]
- Devi, K.; Hanmaiahgari, P.R. Experimental analysis of turbulent open channel flow in the near-wake region of a surface-mounted horizontal circular cylinder. In Proceedings of the River Flow 2020: Proceedings of the 10th Conference on Fluvial Hydraulics, Delft, The Netherlands, 7–10 July 2020; pp. 194–202. [Google Scholar]
- Pu, J.H. Velocity Profile and Turbulence Structure Measurement Corrections for Sediment Transport-Induced Water-Worked Bed. Fluids 2021, 6, 86. [Google Scholar] [CrossRef]
- Blanckaert, K.; Lemmin, U. Means of noise reduction in acoustic turbulence measurements. J. Hydraul. Res. 2006, 44, 3–17. [Google Scholar] [CrossRef]
- Maji, S.; Pal, D.; Hanmaiahgari, P.R. Hydrodynamics and turbulence in emergent and sparsely vegetated open channel flow. Environ. Fluid Mech. 2017, 17, 853–877. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Essel, E.E.; Tachie, M.F. Upstream roughness and Reynolds number effects on turbulent flow structure over forward facing step. Int. J. Heat Fluid Flow 2017, 66, 226–242. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, H.; Tang, H. Turbulent flow over a rough backward-facing step. Int. J. Heat Fluid Flow 2013, 44, 155–169. [Google Scholar] [CrossRef]
Exp. Run | D (m) | (m) | (m/s) | ||||||
---|---|---|---|---|---|---|---|---|---|
Run 1 | 0.05 | 0.023 | 0.30 | 0.15 | 3.1 | 0.00254 | 45,000 | 18.03 | 0.09 |
Run 2 | 0.05 | 0.023 | 0.30 | 0.19 | 3.1 | 0.00254 | 57,000 | 23.37 | 0.11 |
GB 1 | 0.06 | 0.022 | 0.25 | 0.25 | 2.4 | 0.04200 | 62,500 | 1050 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devi, K.; Hanmaiahgari, P.R.; Balachandar, R.; Pu, J.H. A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder. Fluids 2021, 6, 239. https://doi.org/10.3390/fluids6070239
Devi K, Hanmaiahgari PR, Balachandar R, Pu JH. A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder. Fluids. 2021; 6(7):239. https://doi.org/10.3390/fluids6070239
Chicago/Turabian StyleDevi, Kalpana, Prashanth Reddy Hanmaiahgari, Ram Balachandar, and Jaan H. Pu. 2021. "A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder" Fluids 6, no. 7: 239. https://doi.org/10.3390/fluids6070239
APA StyleDevi, K., Hanmaiahgari, P. R., Balachandar, R., & Pu, J. H. (2021). A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder. Fluids, 6(7), 239. https://doi.org/10.3390/fluids6070239