The Role of the Double-Layer Potential in Regularised Stokeslet Models of Self-Propulsion
Abstract
:1. Introduction
1.1. Literature Review
1.2. Mathematical Background of Regularised Stokeslets and the Double-Layer Potential
1.3. Numerical Discretisation
2. Materials and Methods
- Evaluation of the higher order near-singularity ( for ).
- The need to calculate the surface normal without a true mesh/local geometry.
- The fact that the surface metric must be calculated explicitly for the implementation of the double-layer term, as opposed to being absorbed into the force density, as is the case for the single-layer term.
2.1. Problem 1: Drag on a Translating Sphere with No-Slip, Partial-Slip, or Free-Slip Boundary Conditions
- N
- no-slip, no-penetration, i.e., for all .
- P
- partial-slip, no-penetration, i.e., and for all .
- F
- free-slip, no-penetration, i.e., and for all .
2.2. Slip-Velocity Squirmer
2.3. Undulating Swimmer
2.4. Rate of Working
3. Results
3.1. Resistance Problem with No-Slip, Free-Slip, and Partial-Slip Boundary Conditions
3.2. Slip Velocity Squirmer
3.3. Undulatory Swimmer
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLP | single-layer potential |
DLP | double-layer potential |
DoF | (scalar) degrees of freedom |
Appendix A. Derivation of the Regularised Stokeslet Boundary Integral Equation for Completely or Partially Bounded Domains
- Flow which is exterior to a volume D but completely enclosed within a bounded space —for example, a cuboid channel , with boundary denoted ;
- Flow in a region P which is ‘partially bounded’; i.e., there are points in P at arbitrarily large distances from the origin, but there is also a boundary surface —a commonly studied example is a plane boundary with the flow region being
Appendix B. Elimination of the Double-Layer Potential for Flow around a Rigid Body
Appendix C. Elimination of the Double-Layer Potential for Flow around a Volume Conserving Body
Appendix D. Equivalency of the Physical and Adjusted Force and Moment Conditions for the Force and Moment-Free Volume Conserving Swimming Problem
Appendix E. Undulating Swimmer Model in the Presence of a Boundary
Appendix F. Convergence Tests for the Resistance and Squirming Swimmer Problems
Appendix G. Convergence Test for the Undulatory Swimming Problem
DoF | U | ||
---|---|---|---|
324 | (, , ) | (, , ) | |
1284 | (, , ) | (, , ) | |
5112 | (, , ) | (, , ) |
DoF | U | ||
---|---|---|---|
324 | (, , ) | (, , ) | |
1284 | (, , ) | (, , ) | |
5112 | (, , ) | (, , ) |
References
- Gray, J.; Hancock, G. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 1955, 32, 802–814. [Google Scholar] [CrossRef]
- Johnson, R.; Brokaw, C. Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. Biophys. J. 1979, 25, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R. An improved slender-body theory for Stokes flow. J. Fluid Mech. 1980, 99, 411–431. [Google Scholar] [CrossRef]
- Higdon, J. A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 1979, 90, 685–711. [Google Scholar] [CrossRef]
- Youngren, G.; Acrivos, A. Stokes flow past a particle of arbitrary shape: A numerical method of solution. J. Fluid Mech. 1975, 69, 377–403. [Google Scholar] [CrossRef] [Green Version]
- Phan-Thien, N.; Tran-Cong, T.; Ramia, M. A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 1987, 184, 533–549. [Google Scholar] [CrossRef]
- Ramia, M.; Tullock, D.; Phan-Thien, N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 1993, 65, 755–778. [Google Scholar] [CrossRef] [Green Version]
- Fauci, L.; McDonald, A. Sperm motility in the presence of boundaries. Bull. Math. Biol. 1995, 57, 679–699. [Google Scholar] [CrossRef]
- Dillon, R.; Fauci, L.; Fogelson, A.; Gaver III, D. Modeling biofilm processes using the immersed boundary method. J. Comput. Phys. 1996, 129, 57–73. [Google Scholar] [CrossRef]
- Dillon, R.; Fauci, L. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 2000, 207, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Cortez, R. The method of regularized Stokeslets. SIAM J. Sci. Comput. 2001, 23, 1204–1225. [Google Scholar] [CrossRef]
- Cortez, R.; Fauci, L.; Medovikov, A. The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming. Phys. Fluids 2005, 17, 031504. [Google Scholar] [CrossRef]
- Ainley, J.; Durkin, S.; Embid, R.; Boindala, P.; Cortez, R. The method of images for regularized Stokeslets. J. Comp. Phys. 2008, 227, 4600–4616. [Google Scholar] [CrossRef]
- O’Malley, S.; Bees, M. The orientation of swimming biflagellates in shear flows. Bull. Math. Biol. 2012, 74, 232–255. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, Y.; Griffith, B.; Lim, S. Bacterial flagellar bundling and unbundling via polymorphic transformations. Phys. Rev. E 2018, 98, 052405. [Google Scholar] [CrossRef] [Green Version]
- Mathijssen, A.; Culver, J.; Bhamla, M.; Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 2019, 571, 560–564. [Google Scholar] [CrossRef]
- LaGrone, J.; Cortez, R.; Yan, W.; Fauci, L. Complex dynamics of long, flexible fibers in shear. J. Non-Newton. Fluid Mech. 2019, 269, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, B.; Liu, Y.; LaGrone, J.; Cortez, R.; Fauci, L.; Du Roure, O.; Saintillan, D.; Lindner, A. Flexible filaments buckle into helicoidal shapes in strong compressional flows. Nat. Phys. 2020, 16, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Magdanz, V.; Khalil, I.; Simmchen, J.; Furtado, G.; Mohanty, S.; Gebauer, J.; Xu, H.; Klingner, A.; Aziz, A.; Medina-Sánchez, M.; et al. IRONSperm: Sperm-templated soft magnetic microrobots. Sci. Adv. 2020, 6, eaba5855. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Man, Y.; Wan, K.; Kanso, E. Intracellular coupling modulates biflagellar synchrony. J. R. Soc. Interface 2021, 18, 20200660. [Google Scholar] [CrossRef] [PubMed]
- Cisneros, L.; Kessler, J.; Ortiz, R.; Cortez, R.; Bees, M. Unexpected bipolar flagellar arrangements and long-range flows driven by bacteria near solid boundaries. Phys. Rev. Lett. 2008, 101, 168102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogan, N.; Chellam, S. Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling. J. Membr. Sci. 2008, 318, 379–386. [Google Scholar] [CrossRef]
- Gillies, E.; Cannon, R.; Green, R.; Pacey, A. Hydrodynamic propulsion of human sperm. J. Fluid Mech. 2009, 625, 445–474. [Google Scholar] [CrossRef] [Green Version]
- Gillies, E.; Bondarenko, V.; Cosson, J.; Pacey, A. Fins improve the swimming performance of fish sperm: A hydrodynamic analysis of the Siberian sturgeon Acipenser baerii. Cytoskeleton 2013, 70, 85–100. [Google Scholar] [CrossRef]
- Olson, S.; Lim, S.; Cortez, R. Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation. J. Comput. Phys. 2013, 238, 169–187. [Google Scholar] [CrossRef]
- Hyon, Y.; Powers, T.; Stocker, R.; Fu, H. The wiggling trajectories of bacteria. J. Fluid Mech. 2012, 705, 58–76. [Google Scholar] [CrossRef]
- Rodenborn, B.; Chen, C.H.; Swinney, H.; Liu, B.; Zhang, H. Propulsion of microorganisms by a helical flagellum. Proc. Natl. Acad. Sci. USA 2013, 110, E338–E347. [Google Scholar] [CrossRef] [Green Version]
- Simons, J.; Olson, S.; Cortez, R.; Fauci, L. The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. J. Theor. Biol. 2014, 354, 81–94. [Google Scholar] [CrossRef]
- Gallagher, M.; Choudhuri, D.; Smith, D. Sharp quadrature error bounds for the nearest-neighbor discretization of the regularized stokeslet boundary integral equation. SIAM J. Sci. Comput. 2019, 41, B139–B152. [Google Scholar] [CrossRef]
- Smith, D. A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow. Proc. R. Soc. Lond. Ser. A 2009, 465, 3605–3626. [Google Scholar] [CrossRef] [Green Version]
- Bouzarth, E.; Minion, M. Modeling slender bodies with the method of regularized Stokeslets. J. Comput. Phys. 2011, 230, 3929–3947. [Google Scholar] [CrossRef]
- Cortez, R.; Nicholas, M. Slender body theory for Stokes flows with regularized forces. Commun. Appl. Math. Comput. Sci. 2012, 7, 33–62. [Google Scholar] [CrossRef] [Green Version]
- Cortez, R. Regularized stokeslet segments. J. Comput. Phys. 2018, 375, 783–796. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Johnson, T.; Smith, D.; Blake, J. Symmetry breaking cilia-driven flow in the zebrafish embryo. J. Fluid Mech. 2012, 705, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, P.; Ferreira, R.; Guerrero, A.; Pintado, P.; Tavares, B.; Amaro, J.; Smith, A.; Montenegro-Johnson, T.; Smith, D.; Lopes, S. Left-right organizer flow dynamics: How much cilia activity reliably yields laterality? Dev. Cell 2014, 29, 716–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montenegro-Johnson, T.; Gagnon, D.; Arratia, P.; Lauga, E. Flow analysis of the low Reynolds number swimmer C. elegans. Phys. Rev. Fluids 2016, 1, 053202. [Google Scholar] [CrossRef] [Green Version]
- Montenegro-Johnson, T.; Michelin, S.; Lauga, E. A regularised singularity approach to phoretic problems. Eur. Phys. J. E 2015, 38, 139. [Google Scholar] [CrossRef] [Green Version]
- Varma, A.; Montenegro-Johnson, T.; Michelin, S. Clustering-induced self-propulsion of isotropic autophoretic particles. Soft Matt. 2018, 14, 7155–7173. [Google Scholar] [CrossRef] [Green Version]
- Schuech, R.; Hoehfurtner, T.; Smith, D.; Humphries, S. Motile curved bacteria are Pareto-optimal. Proc. Natl. Acad. Sci. USA 2019, 116, 14440–14447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrero-Gil, A. Weakening accuracy dependence with the regularization parameter in the Method of Regularized Stokeslets. J. Comput. Appl. Math. 2013, 237, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.J. A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation. J. Comput. Phys. 2018, 358, 88–102. [Google Scholar] [CrossRef]
- Gallagher, M.; Smith, D. Meshfree and efficient modeling of swimming cells. Phys. Rev. Fluids 2018, 3, 053101. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, M.; Montenegro-Johnson, T.; Smith, D. Simulations of particle tracking in the oligociliated mouse node and implications for left–right symmetry-breaking mechanics. Phil. Trans. R. Soc. Ser. B. 2020, 375, 20190161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, M.; Smith, D. Passively parallel regularized stokeslets. Phil. Trans. R. Soc. A 2020, 378, 20190528. [Google Scholar] [CrossRef]
- Cortez, R.; Varela, D. A general system of images for regularized Stokeslets and other elements near a plane wall. J. Comp. Phys. 2015, 285, 41–54. [Google Scholar] [CrossRef]
- Wróbel, J.; Cortez, R.; Varela, D.; Fauci, L. Regularized image system for Stokes flow outside a solid sphere. J. Comput. Phys. 2016, 317, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Cortez, R.; Cummins, B.; Leiderman, K.; Varela, D. Computation of three-dimensional Brinkman flows using regularized methods. J. Comput. Phys. 2010, 229, 7609–7624. [Google Scholar] [CrossRef]
- Leiderman, K.; Bouzarth, E.; Cortez, R.; Layton, A. A regularization method for the numerical solution of periodic Stokes flow. J. Comput. Phys. 2013, 236, 187–202. [Google Scholar] [CrossRef]
- Cortez, R.; Hoffmann, F. A fast numerical method for computing doubly-periodic regularized Stokes flow in 3D. J. Comput. Phys. 2014, 258, 1–14. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Leiderman, K. Computation of the singular and regularized image systems for doubly-periodic Stokes flow in the presence of a wall. J. Comput. Phys. 2015, 297, 442–461. [Google Scholar] [CrossRef]
- Mannan, F.; Cortez, R. An Explicit Formula for Two-Dimensional Singly-Periodic Regularized Stokeslets Flow Bounded by a Plane Wall. Commun. Comput. Phys. 2018, 23, 142–167. [Google Scholar] [CrossRef] [Green Version]
- Shankar, V.; Olson, S. Radial basis function (RBF)-based parametric models for closed and open curves within the method of regularized stokeslets. Int. J. Numer. Meth. Fluid. 2015, 79, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Cortez, R. Reduction of the regularization error of the method of regularized Stokeslets for a rigid object immersed in a three-dimensional Stokes flow. Commun. Comput. Phys. 2014, 15, 126–152. [Google Scholar] [CrossRef]
- Zhao, B.; Lauga, E.; Koens, L. Method of regularized stokeslets: Flow analysis and improvement of convergence. Phys. Rev. Fluids 2019, 4, 084104. [Google Scholar] [CrossRef]
- Gallagher, M.; Smith, D. The art of coarse Stokes: Richardson extrapolation improves the accuracy and efficiency of the method of regularized stokeslets. arXiv 2021, arXiv:2101.09286. [Google Scholar] [CrossRef]
- Rostami, M.; Olson, S. Kernel-independent fast multipole method within the framework of regularized Stokeslets. J. Fluid. Struct. 2016, 67, 60–84. [Google Scholar] [CrossRef]
- Rostami, M.; Olson, S. Fast algorithms for large dense matrices with applications to biofluids. J. Comput. Phys. 2019, 394, 364–384. [Google Scholar] [CrossRef]
- Wang, L.; Krasny, R.; Tlupova, S. A Kernel-Independent Treecode Based on Barycentric Lagrange Interpolation. Commun. Comput. Phys. 2020, 28, 1415–1436. [Google Scholar] [CrossRef]
- Tlupova, S.; Beale, J.T. Nearly singular integrals in 3D Stokes flow. Commun. Comput. Phys. 2013, 14, 1207–1227. [Google Scholar] [CrossRef] [Green Version]
- Tlupova, S.; Beale, J. Regularized single and double layer integrals in 3D Stokes flow. J. Comput. Phys. 2019, 386, 568–584. [Google Scholar] [CrossRef] [Green Version]
- Spagnolie, S.; Lauga, E. Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations. J. Fluid Mech. 2012, 700, 105–147. [Google Scholar] [CrossRef] [Green Version]
- Blake, J. Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull. Austr. Math. Soc. 1971, 5, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Lauga, E.; Brenner, M.; Stone, H. Microfluidics: The no-slip boundary condition. In Springer Handbook of Experimental Fluid Dynamics; Tropea, C., Yarin, A., Foss, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1219–1240. [Google Scholar]
- Pozrikidis, C. Boundary Integral and Singularity Methods for Linearized Viscous Flow; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Pozrikidis, C. A practical Guide to Boundary Element Methods with the Software Library BEMLIB; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kempe, T.; Lennartz, M.; Schwarz, S.; Fröhlich, J. Imposing the free-slip condition with a continuous forcing immersed boundary method. J. Comput. Phys. 2015, 282, 183–209. [Google Scholar] [CrossRef]
- Lighthill, M. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 1952, 5, 109–118. [Google Scholar] [CrossRef]
- Pedley, T.; Brumley, D.; Goldstein, R. Squirmers with swirl: A model for Volvox swimming. J. Fluid Mech. 2016, 798, 165–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresdner, R.; Katz, D. Relationships of mammalian sperm motility and morphology to hydrodynamic aspects of cell function. Biol. Reprod. 1981, 25, 920–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, J.; Lissmann, H. The locomotion of nematodes. J. Exp. Biol. 1964, 41, 135–154. [Google Scholar] [CrossRef]
- Montenegro-Johnson, T.; Koens, L.; Lauga, E. Microscale flow dynamics of ribbons and sheets. Soft Matt. 2017, 13, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Schoch, R.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Bhushan, B. Boundary slip and nanobubble study in micro/nanofluidics using atomic force microscopy. Soft Matt. 2010, 6, 29–66. [Google Scholar] [CrossRef]
- Heinecke, A.; Eckhardt, W.; Horsch, M.; Bungartz, H.J. Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kasiteropoulou, D.; Karakasidis, T.; Liakopoulos, A. Dissipative particle dynamics investigation of parameters affecting planar nanochannel flows. Mater. Sci. Eng. B 2011, 176, 1574–1579. [Google Scholar] [CrossRef]
- Sparreboom, W.; Van den Berg, A.; Eijkel, J. Transport in nanofluidic systems: A review of theory and applications. New J. Phys. 2010, 12, 015004. [Google Scholar] [CrossRef]
- Ishimoto, K.; Gaffney, E. Boundary element methods for particles and microswimmers in a linear viscoelastic fluid. J. Fluid Mech. 2017, 831, 228–251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, D.J.; Gallagher, M.T.; Schuech, R.; Montenegro-Johnson, T.D. The Role of the Double-Layer Potential in Regularised Stokeslet Models of Self-Propulsion. Fluids 2021, 6, 411. https://doi.org/10.3390/fluids6110411
Smith DJ, Gallagher MT, Schuech R, Montenegro-Johnson TD. The Role of the Double-Layer Potential in Regularised Stokeslet Models of Self-Propulsion. Fluids. 2021; 6(11):411. https://doi.org/10.3390/fluids6110411
Chicago/Turabian StyleSmith, David J., Meurig T. Gallagher, Rudi Schuech, and Thomas D. Montenegro-Johnson. 2021. "The Role of the Double-Layer Potential in Regularised Stokeslet Models of Self-Propulsion" Fluids 6, no. 11: 411. https://doi.org/10.3390/fluids6110411
APA StyleSmith, D. J., Gallagher, M. T., Schuech, R., & Montenegro-Johnson, T. D. (2021). The Role of the Double-Layer Potential in Regularised Stokeslet Models of Self-Propulsion. Fluids, 6(11), 411. https://doi.org/10.3390/fluids6110411