A Systematic Approach to Predict the Behavior of Cough Droplets Using Feedforward Neural Networks Method
Abstract
:1. Introduction
2. Methodology
2.1. Proposed Method
2.2. Droplet Generator
2.3. Mask Model
if diameter<= max_range |
efficiency=mask_model(diameter) |
else |
% if the diameter is more than the max_range |
efficiency=eff_max |
end |
2.4. Environment Models
3. Results and Discussions
3.1. Mask Model Evaluation
3.2. The Droplet Evaporation and Penetration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duguid, J.P. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiol. Infect. 1946, 44, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Nallamothu, S.; Shrivastava, S.; Jadeja, H.; Nakod, P.; Andrade, P.; Doshi, P.; Kumaraswamy, G. On the utility of cloth facemasks for controlling ejecta during respiratory events. arXiv 2020, arXiv:2005.03444. [Google Scholar]
- Verma, S.; Dhanak, M.; Frankenfield, J. Visualizing droplet dispersal for face shields and masks with exhalation valves. Phys. Fluids 2020, 32, 091701. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R.; Morawska, L. The Mechanism of Breath Aerosol Formation. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.C.K.; Cheng, Y.C. Study of expiratory droplet dispersion and transport using a new Eulerian modeling approach. Atmos. Environ. 2007, 41, 7473–7484. [Google Scholar] [CrossRef]
- Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M.; Balasubramanian, N.; Bordbar, H.; Erästö, P.; Grande, R.; et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 2020, 130, 104866. [Google Scholar] [CrossRef]
- Shafaghi, A.H.; Talabazar, F.R.; Koşar, A.; Ghorbani, M. On the effect of the respiratory droplet generation condition on COVID-19 transmission. Fluids 2020, 5, 113. [Google Scholar] [CrossRef]
- Redrow, J.; Mao, S.; Celik, I.; Posada, J.A.; Feng, Z.G. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Build. Environ. 2011, 46, 2042–2051. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Rogak, S.N.; Green, S.I.; Bartlett, K.H. CFD simulation of human coughs and sneezes: A study in droplet dispersion, heat, and mass transfer. Asme Int. Mech. Eng. Congr. Expo. Proc. (IMECE) 2010, 7, 1051–1060. [Google Scholar] [CrossRef]
- Li, X.; Shang, Y.; Yan, Y.; Yang, L.; Tu, J. Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Build. Environ. 2018, 128, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lee, G.W.M.; Chen, C.M.; Wu, C.C.; Yu, K.P. The Size and Concentration of Droplets Generated by Coughing in Human Subjects. J. Aerosol Med. 2007, 20, 484–494. [Google Scholar] [CrossRef]
- Busco, G.; Yang, S.R.; Seo, J.; Hassan, Y.A. Sneezing and asymptomatic virus transmission. Phys. Fluids 2020, 32, 073309. [Google Scholar] [CrossRef]
- Dbouk, T.; Drikakis, D. On coughing and airborne droplet transmission to humans. Phys. Fluids 2020, 32, 053310. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Gao, N.; Wang, T. CFD study on the transmission of indoor pollutants under personalized ventilation. Build. Environ. 2013, 63, 69–78. [Google Scholar] [CrossRef]
- Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment: A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Niu, J.; Gao, N.; Zhu, T.; Wu, J. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room. Build. Environ. 2011, 46, 397–408. [Google Scholar] [CrossRef]
- Forster, W.A.; Kimberley, M.O.; Zabkiewicz, J.A. A universal spray droplet adhesion model. Trans. Am. Soc. Agric. Eng. 2005, 48, 1321–1330. [Google Scholar] [CrossRef]
- Sellens, R.W.; Brzustowski, T.A. A simplified prediction of droplet velocity distributions in a spray. Combust. Flame 1986, 65, 273–279. [Google Scholar] [CrossRef]
- Arun, S.; Rakesh, P. Computational Evaluation of Spray Characteristics in Pressure Swirl Atomizers. Int. J. Sci. Eng. Res. 2015, 5, 804–809. [Google Scholar]
- Dinc, M.; Gray, D.D.; Hillen, N.L.; Taylor, S.; Kuhlman, J.M.; Wv, M. Spray Simulations to Support the Development of a Monte Carlo-Based Spray Cooling Model. In Proceedings of the 43rd AIAA Fluid Dynamics Conference, New Orleans, Louisiana, 25–28 June 2012; pp. 1–24. [Google Scholar]
- Chen, Q.; Xu, W. A zero-equation turbulence model for indoor airflow simulation. Energy Build. 1998, 28, 137–144. [Google Scholar] [CrossRef]
- Gupta, J.K.; Lin, C.H.; Chen, Q. Flow dynamics and characterization of a cough. Indoor Air 2009, 19, 517–525. [Google Scholar] [CrossRef]
- Cummins, C.P.; Ajayi, O.J.; Mehendale, F.V.; Gabl, R.; Viola, I.M. The dispersion of spherical droplets in source-sink flows and their relevance to the COVID-19 pandemic. Phys. Fluids 2020, 32, 083302. [Google Scholar] [CrossRef]
- Bahiuddin, I.; Mazlan, S.A.; Shapiai, M.I.; Imaduddin, F.; Ubaidillah Choi, S.B. A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization. Appl. Soft Comput. 2019, 76, 615–628. [Google Scholar] [CrossRef]
- Huang GBin Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- Bahiuddin, I.; Imaduddin, F.; Mazlan, S.A.; Ariff, M.H.; Mohmad, K.B.; Choi, S.B. Accurate and fast estimation for field-dependent nonlinear damping force of meandering valve-based magnetorheological damper using extreme learning machine method. Sens. Actuators A Phys. 2021, 318, 112479. [Google Scholar] [CrossRef]
- Cheng, G.J.; Cai, L.; Pan, H.X. Comparison of Extreme Learning Machine with Support Vector Regression for Reservoir Permeability Prediction. In Proceedings of the 2009 International Conference on Computational Intelligence and Security, Beijing, China, 11–14 December 2009; Volume 2. [Google Scholar] [CrossRef]
- Neumann, K. Reliability of Extreme Learning Machines. Ph.D. Thesis, Bielefeld University, Bielefeld, Germany, 2014. [Google Scholar]
- Feng, Y.; Marchal, T.; Sperry, T.; Yi, H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. J. Aerosol Sci. 2020, 147, 105585. [Google Scholar] [CrossRef]
- Bahiuddin, I.; Wahab, N.A.; Shapiai, M.I.; Mazlan, S.A.; Mohamad, N.; Imaduddin, F.; Ubaidillah. Prediction of field-dependent rheological properties of magnetorheological grease using extreme learning machine method. J. Intell. Mater. Syst. Struct. 2019, 30, 1727–1742. [Google Scholar] [CrossRef]
- Bahiuddin, I.; Mazlan, S.A.; Shapiai, M.I.; Choi, S.B.; Imaduddin, F.; Rahman, M.A.; Ariff, M.H. A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method. Sens. Actuators A Phys. 2018, 281, 209–221. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W. Mapping mineral prospectivity using an extreme learning machine regression. Ore Geol. Rev. 2017, 80, 200–213. [Google Scholar] [CrossRef]
- Bahiuddin, I.; Mazlan, S.A.; Shapiai, M.I.; Imaduddin, F.; Ubaidilla. Study of extreme learning machine activation functions for magnetorheological fluid modelling in medical devices application. In Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, Malaysia, 27–29 November 2017. [Google Scholar] [CrossRef]
- Zohdi, T.I. Modeling and simulation of the infection zone from a cough. Comput. Mech. 2020, 66, 1025–1034. [Google Scholar] [CrossRef]
- Dbouk, T.; Drikakis, D. On respiratory droplets and face masks. Phys. Fluids 2020, 32, 063303. [Google Scholar] [CrossRef] [PubMed]
- Bi, R. A Numerical Investigation of Human Cough Jet Development and Droplet Dispersion. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2018. [Google Scholar]
- Xie Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments. Indoor Air 2007, 17, 211–2256. [Google Scholar] [CrossRef] [PubMed]
Mask | ||
---|---|---|
No Mask | 0 | 0 |
Gauze | 1 | 77.0 |
Cotton | 6 | 90.0 |
Procedure | 65 | 99.7 |
Surgical | 75 | 100.0 |
N95 | 95 | 100.0 |
Models | Data | RMSE | R2 |
---|---|---|---|
Mask model | Training Data | 0.022 | 0.997 |
Testing Data | 0.042 | 0.989 | |
Diameter Reduction model | Training Data | 13.378 | 0.999 |
Testing Data | 26.798 | 0.994 | |
Horizontal distance model | Training Data | 0.039 | 0.990 |
Testing Data | 0.057 | 0.933 |
Condition | Droplet Number | The Outlet Vol (%) | |
---|---|---|---|
No Mask | 3000 | 100.0 | 121.1 |
Gauze | 695 | 15.7 | 111.6 |
Cotton | 309 | 17.4 | 121.7 |
Procedure | 7 | 5.0 × 10−3 | 58.3 |
Surgical | 1 | 1.1 × 10−12 | 0.1 |
N95 | 0 | 0 | 0.0 |
Mask Type | Evaporated Droplets | Not Evaporated Droplets | ||
---|---|---|---|---|
No Mask | 711 | 2020 | 980 | 171.26 |
Gauze | 166 | 500 | 195 | 165.77 |
Cotton | 82 | 215 | 94 | 197.56 |
Procedure | 2 | 6 | 1 | 67.89 |
Surgical Mask | 1 | 1 | 0 | 0.00 |
N95 | 0 | 0 | 0 | 0.00 |
Mask Type | ||||||
---|---|---|---|---|---|---|
No Mask | 75 | 13.94 | 1979 | 163.07 | 933 | 42.35 |
Gauze | 24 | 14.02 | 447 | 151.70 | 218 | 43.13 |
Cotton | 10 | 14.99 | 202 | 165.48 | 93 | 43.25 |
Procedure | 0 | 0.00 | 2 | 79.88 | 3 | 42.15 |
Surgical Mask | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
N95 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahiuddin, I.; Wibowo, S.B.; Syairaji, M.; Putra, J.T.; Pandito, C.A.; Maulana, A.F.; Prastica, R.M.S.; Nazmi, N. A Systematic Approach to Predict the Behavior of Cough Droplets Using Feedforward Neural Networks Method. Fluids 2021, 6, 76. https://doi.org/10.3390/fluids6020076
Bahiuddin I, Wibowo SB, Syairaji M, Putra JT, Pandito CA, Maulana AF, Prastica RMS, Nazmi N. A Systematic Approach to Predict the Behavior of Cough Droplets Using Feedforward Neural Networks Method. Fluids. 2021; 6(2):76. https://doi.org/10.3390/fluids6020076
Chicago/Turabian StyleBahiuddin, Irfan, Setyawan Bekti Wibowo, M. Syairaji, Jimmy Trio Putra, Cahyo Adi Pandito, Ahdiar Fikri Maulana, Rian Mantasa Salve Prastica, and Nurhazimah Nazmi. 2021. "A Systematic Approach to Predict the Behavior of Cough Droplets Using Feedforward Neural Networks Method" Fluids 6, no. 2: 76. https://doi.org/10.3390/fluids6020076
APA StyleBahiuddin, I., Wibowo, S. B., Syairaji, M., Putra, J. T., Pandito, C. A., Maulana, A. F., Prastica, R. M. S., & Nazmi, N. (2021). A Systematic Approach to Predict the Behavior of Cough Droplets Using Feedforward Neural Networks Method. Fluids, 6(2), 76. https://doi.org/10.3390/fluids6020076