Jet Dynamics Associated with Drop Impact on Micropillared Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and the Substrate
2.2. Fluid Properties and Dispensation
3. Results and Discussion
3.1. Jetting Phenomena
3.2. Trends in Jet Evolution
3.3. Breakup of the Jet
3.4. Jet Velocity and Satellite Droplet Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsai, P.; Pacheco, S.; Pirat, C.; Lefferts, L.; Lohse, D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir 2009, 25, 12293–12298. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, L.; Li, Z.; Zhang, K. Submillimeter-Sized Bubble Entrapment and a High-Speed Jet Emission during Droplet Impact on Solid Surfaces. Langmuir 2017, 33, 7225–7230. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.T.; Maynes, D.; Webb, B.W. Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces. Exp. Fluids 2012, 53, 603–618. [Google Scholar] [CrossRef]
- Siddique, A.U.; Trimble, M.; Zhao, F.; Weislogel, M.M.; Tan, H. Jet ejection following drop impact on micropillared hydrophilic substrates. Phys. Rev. Fluids 2020, 5, 063606. [Google Scholar] [CrossRef]
- Zeff, B.W.; Kleber, B.; Fineberg, J.; Lathrop, D.P. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nat. Cell Biol. 2000, 403, 401–404. [Google Scholar] [CrossRef]
- Eggers, J.; Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 2008, 71, 036601. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S. Drop Impact on a Solid Surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef] [Green Version]
- Spiel, D.E. More on the births of jet drops from bubbles bursting on seawater surfaces. J. Geophys. Res. Space Phys. 1997, 102, 5815–5821. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L.; Li, B.; Premaratne, P.; Jiang, S.; Qin, H. Study effects of particle size in metal nanoink for electrohydrodynamic inkjet printing through analysis of droplet impact behaviors. J. Manuf. Process. 2020, 56, 1270–1276. [Google Scholar] [CrossRef]
- Worthington, A.M., III. A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 1877, 25, 498–503. [Google Scholar] [CrossRef]
- Ghabache, É.; Antkowiak, A.; Josserand, C.; Séon, T. On the physics of fizziness: How bubble bursting controls droplets ejection. Phys. Fluids 2014, 26, 121701. [Google Scholar] [CrossRef] [Green Version]
- Plesset, M.S.; Prosperetti, A. Bubble Dynamics and Cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Bartolo, D.; Josserand, C.; Bonn, D. Singular Jets and Bubbles in Drop Impact. Phys. Rev. Lett. 2006, 96, 124501. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.; Pandey, K.; Banik, M.; Mukherjee, R.; Basu, S. Dynamics of droplet impingement on bioinspired surface: Insights into spreading, anomalous stickiness and break-up. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2019, 475, 20190260. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Takezawa, H.; Ogata, S. Droplet impact on textured surfaces composed of commercial stainless razor blades. Colloids Surf. A: Physicochem. Eng. Asp. 2016, 506, 363–370. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Guo, J.; Zou, S.; Lin, S.; Zhao, B.; Deng, X.; Chen, L. Oblique droplet impact on superhydrophobic surfaces: Jets and bubbles. Phys. Fluids 2020, 32, 122112. [Google Scholar] [CrossRef]
- Modak, C.D.; Kumar, A.; Tripathy, A.; Sen, P. Drop impact printing. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ghabache, E.; Séon, T. Size of the top jet drop produced by bubble bursting. Phys. Rev. Fluids 2016, 1, 051901. [Google Scholar] [CrossRef] [Green Version]
- Gañán-Calvo, A.M. Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed. Phys. Rev. Lett. 2017, 119, 204502. [Google Scholar] [CrossRef] [PubMed]
- Brasz, C.F.; Bartlett, C.T.; Walls, P.L.L.; Flynn, E.G.; Yu, Y.E.; Bird, J.C. Minimum size for the top jet drop from a bursting bubble. Phys. Rev. Fluids 2018, 3, 074001. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Eggers, J.; Deike, L. Bubble Bursting: Universal Cavity and Jet Profiles. Phys. Rev. Lett. 2018, 121, 144501. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wang, S.-P.; Li, S.; Liu, W.-T. Bubble interactions and bursting behaviors near a free surface. Phys. Fluids 2019, 31, 042104. [Google Scholar] [CrossRef]
- Gordillo, J.M.; Gekle, S. Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 2010, 663, 331–346. [Google Scholar] [CrossRef]
- Séon, T.; Liger-Belair, G. Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation. Eur. Phys. J. Spec. Top. 2017, 226, 117–156. [Google Scholar] [CrossRef] [Green Version]
% Glycerol by Volume | Density ρ (kg/m3) | Surface Tension σ (mN/m) | Viscosity µ (mPa·s) | Contact Angle θ (°) | Oh |
---|---|---|---|---|---|
0 (DI water) | 997 | 72 | 0.96 | 51.4 | 0.0023 |
25 | 1070 | 69.5 | 2.3 | 47.1 | 0.0051 |
35 | 1100 | 69 | 3.5 | 46.4 | 0.0077 |
40 | 1113 | 68 | 4.5 | 43.9 | 0.01 |
50 | 1141 | 67 | 7.7 | 48.5 | 0.017 |
55 | 1155 | 66 | 10.5 | 49.4 | 0.023 |
% Glycerol by Volume | rj | zj | rb | nr |
---|---|---|---|---|
DI water | 6.9574 | 0.8423 | 0.5030 | 0.6354 |
35 | 0.1145 | 1.0061 | 0.0414 | 0.5902 |
37.5 | 0.2390 | 1.1130 | 0.0200 | 0.7729 |
40 | 0.1471 | 0.9846 | 0.0190 | 0.6209 |
50 | 0.2130 | 0.7305 | 0.0520 | 0.8504 |
55 | 0.1486 | 0.9087 | 0.2266 | 0.6395 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asai, B.; Siddique, A.U.; Tan, H. Jet Dynamics Associated with Drop Impact on Micropillared Substrate. Fluids 2021, 6, 155. https://doi.org/10.3390/fluids6040155
Asai B, Siddique AU, Tan H. Jet Dynamics Associated with Drop Impact on Micropillared Substrate. Fluids. 2021; 6(4):155. https://doi.org/10.3390/fluids6040155
Chicago/Turabian StyleAsai, Brooklyn, Anayet Ullah Siddique, and Hua Tan. 2021. "Jet Dynamics Associated with Drop Impact on Micropillared Substrate" Fluids 6, no. 4: 155. https://doi.org/10.3390/fluids6040155
APA StyleAsai, B., Siddique, A. U., & Tan, H. (2021). Jet Dynamics Associated with Drop Impact on Micropillared Substrate. Fluids, 6(4), 155. https://doi.org/10.3390/fluids6040155