A Computational Fluid Dynamics Model for the Small-Scale Dynamics of Wave, Ice Floe and Interstitial Grease Ice Interaction
Abstract
:1. Introduction
2. Small-Scale Model
2.1. Momentum Equation
2.2. Sea Ice Rheology
2.2.1. Grease Ice Rheology
2.2.2. Ice Floe Rheology
3. Numerical Implementation
Parameter | Definition | Value | Unit |
---|---|---|---|
thickness ice floes and grease ice | 0.8, 0.2 [46] | m | |
submerged ice floe thickness | 0.54 | m | |
density ice floes and grease ice | 918, 930 [3,47,48,49] | ||
first Lamé parameter ice floes | 6.4 [45] | ||
second Lamé parameter ice floes | 3.3 [45] | ||
water density | 1026 [13] | ||
ice-ocean drag coefficient ice floes | 0.005 [50,51] | - | |
ice-ocean drag coefficient grease ice | 0.0013 [47] | - | |
ice-ocean turning angle | 0 [44] | ||
e | yield surface axes ratio grease ice | 2 [39,40,52] | - |
wave steepness | 0.06 [18,53] | - |
4. Convergence Analysis
4.1. Grid Size Convergence Analysis
4.2. Domain Size Convergence Analysis
5. Analysis of the Sea Ice Layout and Rheology
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wadhams, P.; Parmiggiani, F.; de Carolis, G. Wave Dispersion by Antarctic Pancake Ice From Sar Images: A Method for Measuring Ice Thickness. Advances in SAR Oceanography from Envisat and ERS Missions. 2006, Volume 613. Available online: https://earth.esa.int/cgi-bin/confseasard75e.html?abstract=110 (accessed on 23 April 2021).
- Massom, R.A.; Stammerjohn, S.E. Antarctic sea ice change and variability - Physical and ecological implications. Polar Sci. 2010, 4, 149–186. [Google Scholar] [CrossRef] [Green Version]
- Alberello, A.; Bennetts, L.; Heil, P.; Eayrs, C.; Vichi, M.; MacHutchon, K.; Onorato, M.; Toffoli, A. Drift of pancake ice floes in the winter Antarctic marginal ice zone during polar cyclones. J. Geophys. Res. Ocean. 2020, 125, e2019JC015418. [Google Scholar] [CrossRef] [Green Version]
- Vichi, M.; Eayrs, C.; Alberello, A.; Bekker, A.; Bennetts, L.; Holland, D.; de Jong, E.; Joubert, W.; MacHutchon, K.; Messori, G.; et al. Effects of an explosive polar cyclone crossing the Antarctic marginal ice zone. Geophys. Res. Lett. 2019, 46, 5948–5958. [Google Scholar] [CrossRef] [Green Version]
- Häkkinen, S. A constitutive law for sea ice and some applications. Math. Model. 1987, 9, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Hibler, W., III. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 1979, 9, 815–846. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.B. Gravity waves on ice-covered water. J. Geophys. Res. Ocean. 1998, 103, 7663–7669. [Google Scholar] [CrossRef]
- Wang, R.; Shen, H.H. Gravity waves propagating into an ice-covered ocean: A viscoelastic model. J. Geophys. Res. Ocean. 2010, 115, 1–12. [Google Scholar] [CrossRef]
- Pritchard, R.S. Mathematical characteristics of sea ice dynamics models. J. Geophys. Res. Ocean. 1988, 93, 15609–15618. [Google Scholar] [CrossRef]
- Kleine, E.; Sklyar, S. Mathematical features of Hibler’s model of large-scale sea-ice dynamics. Dtsch. Hydrogr. Z. 1995, 47, 179–230. [Google Scholar] [CrossRef]
- Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H. Scaling properties of sea ice deformation from buoy dispersion analysis. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Dansereau, V.; Weiss, J.; Saramito, P.; Lattes, P. A Maxwell elasto-brittle rheology for sea ice modelling. Cryosphere 2016, 10, 1339–1359. [Google Scholar] [CrossRef] [Green Version]
- Mehlmann, C.; Richter, T. A finite element multigrid-framework to solve the sea ice momentum equation. J. Comput. Phys. 2017, 348, 847–861. [Google Scholar] [CrossRef]
- Mehlmann, C.; Richter, T. A modified global Newton solver for viscous-plastic sea ice models. Ocean Model. 2017, 116, 96–107. [Google Scholar] [CrossRef]
- Biddle, L.; Swart, S. The observed seasonal cycle of submesoscale processes in the Antarctic marginal ice zone. J. Geophys. Res. Ocean. 2020, 125, e2019JC015587. [Google Scholar] [CrossRef]
- Leppäranta, M. The Drift of Sea Ice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Shen, H.; Perrie, W.; Hu, Y.; He, Y. Remote sensing of waves propagating in the marginal ice zone by SAR. J. Geophys. Res. Ocean. 2018, 123, 189–200. [Google Scholar] [CrossRef]
- Alberello, A.; Bennetts, L.; Onorato, M.; Vichi, M.; MacHutchon, K.; Eayrs, C.; Ntamba, B.N.; Benetazzo, A.; Bergamasco, F.; Nelli, F.; et al. An extreme wave field in the winter Antarctic marginal ice zone during an explosive polar cyclone. arXiv 2021, arXiv:2103.08864. [Google Scholar]
- Toyota, T.; Kohout, A.; Fraser, A.D. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 131, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Squire, V.A. Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol. 2007, 49, 110–133. [Google Scholar] [CrossRef]
- Shen, H.H.; Hibler, W.D., III; Leppäranta, M. The role of floe collisions in sea ice rheology. J. Geophys. Res. Ocean. 1987, 92, 7085–7096. [Google Scholar] [CrossRef]
- Alberello, A.; Onorato, M.; Bennetts, L.; Vichi, M.; Eayrs, C.; MacHutchon, K.; Toffoli, A. Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone. Cryosphere 2019, 13, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Alberello, A.; Nelli, F.; Dolatshah, A.; Bennetts, L.G.; Onorato, M.; Toffoli, A. An Experimental Model of Wave Attenuation in Pancake Ice. In Proceedings of the 29th International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Honolulu, HI, USA, 16–21 June 2019. [Google Scholar]
- Kohout, A.; Williams, M.; Dean, S.; Meylan, M. Storm-induced sea-ice breakup and the implications for ice extent. Nature 2014, 509, 604–607. [Google Scholar] [CrossRef]
- Stopa, J.E.; Sutherland, P.; Ardhuin, F. Strong and highly variable push of ocean waves on Southern Ocean sea ice. Proc. Natl. Acad. Sci. USA 2018, 115, 5861–5865. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, M.A. On the mesoscale interaction of lead ice and floes. J. Geophys. Res. Ocean. 1996, 101, 18315–18326. [Google Scholar] [CrossRef]
- Herman, A. Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a—Model description and implementation. Geosci. Model. Dev. 2016, 9, 1219–1241. [Google Scholar] [CrossRef] [Green Version]
- Herman, A. Numerical modeling of force and contact networks in fragmented sea ice. Ann. Glaciol. 2013, 54, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.; Cheng, S.; Shen, H.H. Wave energy attenuation in fields of colliding ice floes–Part 2: A laboratory case study. Cryosphere 2019, 13, 2901–2914. [Google Scholar] [CrossRef] [Green Version]
- Bennetts, L.G.; Alberello, A.; Meylan, M.H.; Cavaliere, C.; Babanin, A.V.; Toffoli, A. An idealised experimental model of ocean surface wave transmission by an ice floe. Ocean Model. 2015, 96, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Skene, D.; Bennetts, L.; Meylan, M.; Toffoli, A. Modelling water wave overwash of a thin floating plate. J. Fluid Mech. 2015, 777. [Google Scholar] [CrossRef] [Green Version]
- Nelli, F.; Bennetts, L.G.; Skene, D.M.; Toffoli, A. Water wave transmission and energy dissipation by a floating plate in the presence of overwash. J. Fluid Mech. 2020, 889. [Google Scholar] [CrossRef]
- Damsgaard, A.; Adcroft, A.; Sergienko, O. Application of discrete element methods to approximate sea ice dynamics. J. Adv. Model. Earth Syst. 2018, 10, 2228–2244. [Google Scholar] [CrossRef]
- Rabatel, M.; Labbé, S.; Weiss, J. Dynamics of an assembly of rigid ice floes. J. Geophys. Res. Ocean. 2015, 120, 5887–5909. [Google Scholar] [CrossRef] [Green Version]
- McNamara, S. Molecular dynamics method. Discrete Numer. Model. Granul. Mater. 2011. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Herman, A. Wave-Induced Surge Motion and Collisions of Sea Ice Floes: Finite-Floe-Size Effects. J. Geophys. Res. Ocean. 2018, 123, 7472–7494. [Google Scholar] [CrossRef]
- Thorndike, A.S.; Rothrock, D.A.; Maykut, G.A.; Colony, R. The Thickness Distribution of Sea Ice. J. Geophys. Res. 1975, 80, 4501. [Google Scholar] [CrossRef]
- Leppäranta, M.; Hibler, W.D. The role of plastic ice interaction in marginal ice zone dynamics. J. Geophys. Res. 1985, 90, 11899. [Google Scholar] [CrossRef]
- Hunke, E.C.; Dukowicz, J.K. An Elastic—Viscous—Plastic Model for Sea Ice Dynamics. J. Phys. Ocean. 1997, 27, 1849–1867. [Google Scholar] [CrossRef] [Green Version]
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics; Springer: Berlin, Germany, 2002; p. 423. [Google Scholar] [CrossRef] [Green Version]
- Roenby, J.; Bredmose, H.; Jasak, H. A computational method for sharp interface advection. R. Soc. Open Sci. 2016, 3, 160405. [Google Scholar] [CrossRef] [Green Version]
- Roenby, J.; Bredmose, H.; Jasak, H. IsoAdvector: Geometric VOF on general meshes. In OpenFOAM®; Springer: Berlin, Germany, 2019; pp. 281–296. [Google Scholar]
- Steiner, N. Introduction of variable drag coefficients into sea-ice models. Ann. Glaciol. 2001, 33, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L.H.; Johnson, J.B.; Sturm, M.; Blaisdell, G.L. Snow Mechanics: Review of the State of Knowledge and Applications; Technical Report; Cold Regions Research and Engineering Laboratory: Hanover, South Africa, 1997. [Google Scholar]
- Worby, A.P.; Geiger, C.A.; Paget, M.J.; Van Woert, M.L.; Ackley, S.F.; DeLiberty, T.L. Thickness distribution of Antarctic sea ice. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, M.; Williams, M.; Langhorne, P.; Purdie, C.; Crook, J. Frazil deposition under growing sea ice. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Radia, N.V. Frazil Ice Formation in the Polar Oceans. Ph.D. Thesis, University College London, London, UK, 2014. [Google Scholar]
- Schulkes, R.; Morland, L.; Staroszczyk, R. A finite-element treatment of sea ice dynamics for different ice rheologies. Int. J. Numer. Anal. Methods Geomech. 1998, 22, 153–174. [Google Scholar] [CrossRef]
- Lu, P.; Li, Z.; Cheng, B.; Leppäranta, M. A parameterization of the ice-ocean drag coefficient. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Andreas, E.L.; Tucker, W.B., III; Ackley, S.F. Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. J. Geophys. Res. Ocean. 1984, 89, 649–661. [Google Scholar] [CrossRef]
- Hibler, W.D. A Viscous Sea Ice Law as a Stochastic Average of Plasticity. J. Geophys. Res. 1979, 82, 206–209. [Google Scholar] [CrossRef]
- Alberello, A.; Nelli, F.; Dolatshah, A.; Bennetts, L.G.; Onorato, M.; Toffoli, A. A Physical Model of Wave Attenuation in Pancake Ice. Int. J. Offshore Polar Eng. 2021. [Google Scholar]
- Newyear, K.; Martin, S. Comparison of laboratory data with a viscous two-layer model of wave propagation in grease ice. J. Geophys. Res. Ocean. 1999, 104, 7837–7840. [Google Scholar] [CrossRef]
- Wang, R.; Shen, H.H. Cold Regions Science and Technology Experimental study on surface wave propagating through a grease—pancake ice mixture. Cold Reg. Sci. Technol. 2010, 61, 90–96. [Google Scholar] [CrossRef]
Parameter | Definition | Value | Unit |
---|---|---|---|
median XCD layout 1, 2, 3, 4 | 13.0, 11.0, 9.3, 9.7 | m | |
median YCD layout 1, 2, 3, 4 | 10.0, 7.0, 8.0, 9.7 | m | |
XSD layout 1, 2, 3, 4 | 8.8, 7.3, 9.2, 0 | m | |
YSD layout 1, 2, 3, 4 | 5.5, 4.3, 5.6, 0 | m | |
A | ice floe concentration layout 1, 2, 3, 4 | 54.7, 59.7, 57.3, 59.7 | % |
T | wave period | 8, 12, 16 | s |
a | wave amplitude | 1, 2.1, 3.8 | m |
wavelength | 100, 225, 400 | m | |
grease ice viscosity | 0.04 | ||
grease ice strength | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquart, R.; Bogaers, A.; Skatulla, S.; Alberello, A.; Toffoli, A.; Schwarz, C.; Vichi, M. A Computational Fluid Dynamics Model for the Small-Scale Dynamics of Wave, Ice Floe and Interstitial Grease Ice Interaction. Fluids 2021, 6, 176. https://doi.org/10.3390/fluids6050176
Marquart R, Bogaers A, Skatulla S, Alberello A, Toffoli A, Schwarz C, Vichi M. A Computational Fluid Dynamics Model for the Small-Scale Dynamics of Wave, Ice Floe and Interstitial Grease Ice Interaction. Fluids. 2021; 6(5):176. https://doi.org/10.3390/fluids6050176
Chicago/Turabian StyleMarquart, Rutger, Alfred Bogaers, Sebastian Skatulla, Alberto Alberello, Alessandro Toffoli, Carina Schwarz, and Marcello Vichi. 2021. "A Computational Fluid Dynamics Model for the Small-Scale Dynamics of Wave, Ice Floe and Interstitial Grease Ice Interaction" Fluids 6, no. 5: 176. https://doi.org/10.3390/fluids6050176
APA StyleMarquart, R., Bogaers, A., Skatulla, S., Alberello, A., Toffoli, A., Schwarz, C., & Vichi, M. (2021). A Computational Fluid Dynamics Model for the Small-Scale Dynamics of Wave, Ice Floe and Interstitial Grease Ice Interaction. Fluids, 6(5), 176. https://doi.org/10.3390/fluids6050176