Traveling-Standing Water Waves
Abstract
:1. Introduction
2. Equations of Motion and Time-Stepping
3. Traveling-Standing Water Waves
3.1. Formulation as a Two-Point Boundary Value Problem
3.2. Trust-Region Shooting Method
3.3. A Quasi-Periodic Torus Representation of Traveling-Standing Water Waves
4. Numerical Results
4.1. Gaps and Disconnections in the Two-Parameter Family
4.2. Larger-Amplitude Traveling-Standing Water Waves
5. Asymptotic Expansions and Alternative Parameterizations of TS-Waves
5.1. Asymptotic Expansion of the Initial Condition
5.2. Asymptotic Expansion of the Solution on the Rotated Torus
5.3. Alternative Amplitude and Traveling Parameters
6. Summary and Recommendations for Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Computation of the Jacobian
References
- Craik, A.D.D. George Gabriel Stokes on water wave theory. Annu. Rev. Fluid Mech. 2005, 37, 23–42. [Google Scholar] [CrossRef]
- Rayleigh, J. Deep water waves, progressive or stationary, to the third order approximation. Proc. R. Soc. A 1915, 91, 345–353. [Google Scholar]
- Penney, W.G.; Price, A.T. Finite periodic stationary gravity waves in a perfect liquid, Part II. Philos. Trans. R. Soc. Lond. A 1952, 244, 254–284. [Google Scholar]
- Taylor, G.I. An experimental study of standing waves. Proc. R. Soc. Lond. A 1953, 218, 44–59. [Google Scholar]
- Schwartz, L.W.; Whitney, A.K. A semi-analytic solution for nonlinear standing waves in deep water. J. Fluid Mech. 1981, 107, 147–171. [Google Scholar] [CrossRef]
- Schwartz, L.W.; Fenton, J.D. Strongly nonlinear waves. Annu. Rev. Fluid Mech. 1982, 14, 39–60. [Google Scholar] [CrossRef]
- Mercer, G.N.; Roberts, A.J. Standing waves in deep water: Their stability and extreme form. Phys. Fluids A 1992, 4, 259–269. [Google Scholar] [CrossRef]
- Chandler, G.A.; Graham, I.G. The computation of water waves modelled by Nekrasov’s equation. SIAM J. Numer. Anal. 1993, 30, 1041–1065. [Google Scholar] [CrossRef]
- Schultz, W.W.; Vanden-Broeck, J.M.; Jiang, L.; Perlin, M. Highly nonlinear standing water waves with small capillary effect. J. Fluid Mech. 1998, 369, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Vanden-Broeck, J.M. Gravity–Capillary Free–Surface Flows; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Milewski, P.A.; Vanden-Broeck, J.M.; Wang, Z. Dynamics of steep two-dimensional gravity–capillary solitary waves. J. Fluid Mech. 2010, 664, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Wilkening, J. Breakdown of self-similarity at the crests of large amplitude standing water waves. Phys. Rev. Lett. 2011, 107, 184501. [Google Scholar] [CrossRef] [Green Version]
- Wilkening, J.; Yu, J. Overdetermined shooting methods for computing standing water waves with spectral accuracy. Comput. Sci. Discov. 2012, 5, 014017. [Google Scholar] [CrossRef] [Green Version]
- Rycroft, C.H.; Wilkening, J. Computation of three-dimensional standing water waves. J. Comput. Phys. 2013, 255, 612–638. [Google Scholar] [CrossRef] [Green Version]
- Dyachenko, S.; Lushnikov, P.; Korotkevich, A. Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Padé approximation. Stud. Appl. Math 2016, 137, 419–472. [Google Scholar] [CrossRef] [Green Version]
- Lushnikov, P. Structure and location of branch point singularities for Stokes waves on deep water. J. Fluid Mech. 2016, 800, 557–594. [Google Scholar] [CrossRef]
- Dobrokhotov, S.Y.; Krichever, I.M. Multi-phase solutions of the Benjamin-Ono Equation and their averaging. Math. Notes 1991, 49, 583–594. [Google Scholar] [CrossRef]
- Ambrose, D.M.; Wilkening, J. Computation of time-periodic solutions of the Benjamin–Ono equation. J. Nonlinear Sci. 2010, 20, 277–308. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, D.M.; Wilkening, J. Global paths of time-periodic solutions of the Benjamin–Ono equation connecting pairs of traveling waves. Comm. App. Math. Comp. Sci. 2009, 4, 177–215. [Google Scholar] [CrossRef] [Green Version]
- Plotnikov, P.; Toland, J. Nash-Moser theory for standing water waves. Arch. Ration. Mech. Anal. 2001, 159, 1–83. [Google Scholar] [CrossRef]
- Iooss, G.; Plotnikov, P.I.; Toland, J.F. Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 2005, 177, 367–478. [Google Scholar] [CrossRef] [Green Version]
- Alazard, T.; Baldi, P. Gravity capillary standing water waves. Arch. Ration. Mech. Anal. 2015, 217, 741–830. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.; Montalto, R. Quasi-periodic standing wave solutions of gravity-capillary water waves. In Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 2016; Volume 263. [Google Scholar]
- Baldi, P.; Berti, M.; Haus, E.; Montalto, R. Time quasi-periodic gravity water waves in finite depth. Invent. Math. 2018, 214, 739–911. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.; Franzoi, L.; Maspero, A. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. 2021, 240, 99–202. [Google Scholar] [CrossRef]
- Berti, M.; Franzoi, L.; Maspero, A. Pure gravity traveling quasi-periodic water waves with constant vorticity. arXiv 2021, arXiv:2101.12006. [Google Scholar]
- Feola, R.; Giuliani, F. Time quasi-periodic traveling gravity water waves in infinite depth. Rend. Lincei-Mat. Appl. 2020, 31, 901–916. [Google Scholar]
- Pierce, R.; Knobloch, E. On the modulational stability of traveling and standing water waves. Phys. Fluids 1994, 6, 1177–1190. [Google Scholar] [CrossRef]
- Bridges, T.; Laine-Pearson, F. Nonlinear counterpropagating waves, multisymplectic geometry, and the instability of standing waves. SIAM J. Appl. Math. 2004, 64, 2096–2120. [Google Scholar]
- Wilkening, J. Relative-periodic elastic collisions of water waves. Contemp. Math. 2015, 635, 109–129. [Google Scholar]
- Wilkening, J. Harmonic stability of standing water waves. Q. Appl. Math. 2020, 78, 219–260. [Google Scholar] [CrossRef] [Green Version]
- Gohberg, I.; Kaashoek, M.A.; van Schagen, F. On the local theory of regular analytic matrix functions. Linear Algebra Appl. 1993, 182, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 190–194. [Google Scholar] [CrossRef]
- Craig, W.; Sulem, C. Numerical simulation of gravity waves. J. Comput. Phys. 1993, 108, 73–83. [Google Scholar] [CrossRef]
- Lannes, D. Well-posedness of the water-waves equations. J. Am. Math. Soc. 2005, 18, 605–654. [Google Scholar] [CrossRef]
- Baker, G.R.; Meiron, D.I.; Orszag, S.A. Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 1982, 123, 477–501. [Google Scholar] [CrossRef]
- Krasny, R. Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 1986, 65, 292–313. [Google Scholar] [CrossRef]
- Hou, T.Y.; Lowengrub, J.S.; Shelley, M.J. Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 1994, 114, 312–338. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.H.; Roberts, A.J. Branching behavior of standing waves—The signatures of resonance. Phys. Fluids 1999, 11, 1051–1064. [Google Scholar] [CrossRef] [Green Version]
- Artiles, W.; Nachbin, A. Nonlinear evolution of surface gravity waves over highly variable depth. Phys. Rev. Lett. 2004, 93, 234501. [Google Scholar] [CrossRef] [Green Version]
- Baker, G.R.; Xie, C. Singularities in the complex physical plane for deep water waves. J. Fluid Mech. 2011, 685, 83–116. [Google Scholar] [CrossRef] [Green Version]
- Muskhelishvili, N.I. Singular Integral Equations, 2nd ed.; Dover: New York, NY, USA, 1992. [Google Scholar]
- Hairer, E.; Norsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed.; Springer: Berlin, Germany, 2000. [Google Scholar]
- Dutt, A.; Greengard, L.; Rokhlin, V. Spectral deferred correction methods for ordinary differential equations. BIT 2000, 40, 241–266. [Google Scholar] [CrossRef] [Green Version]
- Layton, A.T.; Minion, M.L. Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 2005, 45, 341–373. [Google Scholar] [CrossRef]
- Huang, J.; Jia, J.; Minion, M. Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 2006, 214, 633–656. [Google Scholar] [CrossRef]
- Hou, T.Y.; Li, R. Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 2007, 226, 379–397. [Google Scholar] [CrossRef] [Green Version]
- Kartashova, E. Time scales and structures of wave interaction exemplified with water waves. EPL 2013, 102, 44005. [Google Scholar] [CrossRef] [Green Version]
- Kartashova, E. Nonlinear Resonance Analysis; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Bridges, T.; Dias, F. Spatially quasi-periodic capillary-gravity waves. Contemp. Math. 1996, 200, 31–46. [Google Scholar]
- Wilkening, J.; Zhao, X. Quasi-periodic travelling gravity-capillary waves. J. Fluid Mech. 2021, 915, A7. [Google Scholar] [CrossRef]
- Dyachenko, A.; Lushnikov, P.; Zakharov, V. Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface. J. Fluid Mech. 2019, 869, 526–552. [Google Scholar] [CrossRef] [Green Version]
- Longuet-Higgins, M.S.; Fox, M.J.H. Theory of the almost-highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 1978, 85, 769–786. [Google Scholar] [CrossRef]
- Amick, C.J.; Fraenkel, L.E.; Toland, J.F. On the Stokes conjecture for the wave of extreme form. Acta Math. 1982, 148, 193–214. [Google Scholar] [CrossRef]
- Grant, M.A. Standing Stokes waves of maximum height. J. Fluid Mech. 1973, 60, 593–604. [Google Scholar] [CrossRef]
- Okamura, M. On the enclosed crest angle of the limiting profile of standing waves. Wave Motion 1998, 28, 79–87. [Google Scholar] [CrossRef]
- Okamura, M. Standing gravity waves of large amplitude on deep water. Wave Motion 2003, 37, 173–182. [Google Scholar] [CrossRef]
- Tadjbakhsh, I.; Keller, J.B. Standing surface waves of finite amplitude. J. Fluid Mech. 1960, 8, 442–451. [Google Scholar] [CrossRef]
- Concus, P. Standing capillary–gravity waves of finite amplitude. J. Fluid Mech. 1962, 14, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Amick, C.J.; Toland, J.F. The semi-analytic theory of standing waves. Proc. R. Soc. Lond. A 1987, 411, 123–138. [Google Scholar]
- Stiassnie, M.; Shemer, L. On the interaction of four water-waves. Wave Motion 2005, 41, 307–328. [Google Scholar] [CrossRef]
- Bryant, P.J.; Stiassnie, M. Different forms for nonlinear standing waves in deep water. J. Fluid Mech. 1994, 272, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Longuet-Higgins, M.S. The instabilities of gravity waves of finite amplitude in deep water. II. Subharmonics. Proc. R. Soc. Lond. Ser. A 1978, 360, 489–505. [Google Scholar]
- McLean, J.W. Instabilities of finite-amplitude water waves. J. Fluid Mech. 1982, 114, 315–330. [Google Scholar] [CrossRef]
- MacKay, R.S.; Saffman, P.G. Stability of water waves. Proc. R. Soc. Lond. A 1986, 406, 115–125. [Google Scholar]
- Deconinck, B.; Oliveras, K. The instability of periodic surface gravity waves. J. Fluid Mech. 2011, 675, 141–167. [Google Scholar] [CrossRef] [Green Version]
- Trichtchenko, O.; Deconinck, B.; Wilkening, J. The instability of Wilton’s ripples. Wave Motion 2016, 66, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Wilkening, J.; Zhao, X. Spatially quasi-periodic water waves of infinite depth. J. Nonlin. Sci. 2021, 31, 52. [Google Scholar] [CrossRef]
Change in , | Effect | |
---|---|---|
1. | , | Translation in space by . |
2. | , | Time reversal (or spatial reflection about ). |
3. | , | Translation in space and time by , . |
m: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
variable: | T | |||||||||
• | • | ∘ | ∘ | ∘ | ∘ | |||||
• | • | ∘ | ∘ | |||||||
• | • | • | • | ∘ | ∘ | |||||
• | • | • | • | |||||||
• | • | • | • | • | • |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkening, J. Traveling-Standing Water Waves. Fluids 2021, 6, 187. https://doi.org/10.3390/fluids6050187
Wilkening J. Traveling-Standing Water Waves. Fluids. 2021; 6(5):187. https://doi.org/10.3390/fluids6050187
Chicago/Turabian StyleWilkening, Jon. 2021. "Traveling-Standing Water Waves" Fluids 6, no. 5: 187. https://doi.org/10.3390/fluids6050187
APA StyleWilkening, J. (2021). Traveling-Standing Water Waves. Fluids, 6(5), 187. https://doi.org/10.3390/fluids6050187