Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico
Abstract
:1. Introduction
1.1. Essential Parameters
- Rotation: The Coriolis parameter f, conveying the time scale at which rotational effects is important, is at the mooring location. Rotation implies a height scale through Ekman layer dynamics and impacts the aspect ratio along which internal wave crests and troughs are aligned via linear internal wave kinematics.
- Stratification: The buoyancy frequency N represents gravitational forces within a fluid of varying density. Theoretical endeavors refer to an external stratification not influenced by the boundary mixing process. An estimate of this is provided by CTD profiles taken to the south and east of the mooring in slightly deeper water. External to the boundary, stratification at the depth of the MAVS is . Stratification at the sensor, positioned at 10 m height above bottom ( m), is smaller, s.
- Topography provides two non-dimensional parameters by itself: the continental slope is if we take the separation between the 600 and 825 m isobaths on which the two moorings are located. Topographic roughness with dominant horizontal wavelengths of km having a zonal orientation is superimposed upon this slope (Figure 2), with similar aspect ratios (slopes) characterizing the roughness in the vicinity of the mooring.
1.2. Boundary Layers
1.3. Internal Waves
1.4. Instabilities
1.5. Organization
2. Materials and Methods
2.1. Moored Sensors
2.1.1. Modular Acoustic Velocity Sensor (MAVS)
2.1.2. Aanderaa RDCP
2.1.3. RBR Solo-T
2.1.4. SBE-39
2.1.5. SeaBird 7/8s
2.2. The Turbulent Paradigm
Inertial Subrange Methods
2.3. Orography
3. Results
3.1. Time Dependence
3.2. Vertical Structure
3.3. Moored Data as Spectra
3.4. Moored Data as Cospectra
3.4.1. Momentum
3.4.2. Temperature
- Production range fluxes are more statistically reliable, but much smaller, several percent of the respective swash band metrics. Coherences within the production band (Figure 14) are much smaller than their momentum flux counterparts (Figure 11). Moreover, relative to the mean stratification, production band fluxes are upgradient and imply restratification, Figure 16.
- Inertial subrange fluxes are negligible, as they should be within an inertial subrange.
4. Discussion
4.1. Momentum Fluxes
4.2. Temperature Fluxes
4.3. The Observed Fluxes vs. Atmospheric Surface Boundary Layer Measurements
4.4. Speculation about the Ocean’s Planetary Boundary Layer
4.4.1. Ekman Balances
4.4.2. Production–Dissipation
4.4.3. Diapycnal Advection
4.5. Assessments
4.6. Sensor Performance
- Recording serial output of an RBR Solo with MAVS to eliminate the potential for time base issues.
- Our implementation of the SBE-7/8 micro temperature and conductivity units was not successful, but our experience does not speak to conceptual issues.
- An alternate route to estimating a salinity flux is to utilize estimates of absolute travel time for speed of sound fluctuations [66] in combination with a direct temperature measurement.
- Motionally induced noise could be reduced by using faired cable.
- Developing a dynamical mooring model to understand how to avoid resonances that lead to large amplitude strumming.
- Increasing sampling rate by a factor of two or so would place aliased strumming induced noise into its natural frequency band.
- A longer sensing element for the temperature sensor would remove the instrument case from the vicinity of the MAVS sampling volume and reduce the potential for flow blockage.
- Any discussion of either turbulent or internal swash band momentum fluxes is referenced to the bed stress. Typically, one wants such a measurement near the top of the log-layer, less than one meter . Due to the need for releases and some amount of chain to take up shock loading when the anchor hits bottom, the closest one can manage to place a sensor on a conventional mooring is roughly 6 m . Conventional moorings will likely need to be paired with bottom landers.
- A drawback of the VN100 motion package we employed is that it requires a 17 s boot time, which restricts sampling schemes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBL | Bottom Boundary Layer |
TKE | Turbulent Kinetic Energy |
MAVS | Modular Acoustic Velocity Sensor |
References
- Gross, T.F.; Williams, A.J., III; Grant, W.D. Long-term in situ calculations of kinetic energy and Reynolds stress in a deep sea boundary layer. J. Geophys. Res. Oceans 1986, 91, 8461–8469. [Google Scholar] [CrossRef]
- McPhee, M.G.; Smith, J.D. Measurements of the turbulent boundary layer under pack ice. J. Phys. Oceanogr. 1976, 6, 696–711. [Google Scholar] [CrossRef] [Green Version]
- Thwaites, F.; Williams, A. Development of a modular acoustic velocity sensor. In Proceedings of the OCEANS 96 MTS/IEEE Conference Proceedings, The Coastal Ocean-Prospects for the 21st Century, Fort Lauderdale, FL, USA, 23–26 September 1996; Volume 2, pp. 607–612. [Google Scholar]
- Joye, S.B. Deepwater Horizon, 5 years on. Science 2015, 349, 592–593. [Google Scholar] [CrossRef]
- Gros, J.; Socolofsky, S.A.; Dissanayake, A.L.; Jun, I.; Zhao, L.; Boufadel, M.C.; Reddy, C.M.; Arey, J.S. Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proc. Natl. Acad. Sci. USA 2017, 114, 10065–10070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNutt, M.K.; Camilli, R.; Crone, T.J.; Guthrie, G.D.; Hsieh, P.A.; Ryerson, T.B.; Savas, O.; Shaffer, F. Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20260–20267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socolofsky, S.A.; Adams, E.E.; Sherwood, C.R. Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Ledwell, J.R.; He, R.; Xue, Z.; DiMarco, S.F.; Spencer, L.J.; Chapman, P. Dispersion of a tracer in the deep Gulf of Mexico. J. Geophys. Res. Oceans 2016, 121, 1110–1132. [Google Scholar] [CrossRef] [Green Version]
- Kantha, L. Barotropic tides in the Gulf of Mexico. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 2005, 161, 159–163. [Google Scholar]
- Polzin, K.; Toole, J.; Ledwell, J.; Schmitt, R. Spatial variability of turbulent mixing in the abyssal ocean. Science 1997, 276, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Polzin, K.L. An abyssal recipe. Ocean Model. 2009, 30, 298–309. [Google Scholar] [CrossRef]
- Zhang, X.; DiMarco, S.F.; Smith, D.C., IV; Howard, M.K.; Jochens, A.E.; Hetland, R.D. Near-resonant ocean response to sea breeze on a stratified continental shelf. J. Phys. Oceanogr. 2009, 39, 2137–2155. [Google Scholar] [CrossRef]
- Zhang, X.; Smith, D.C., IV; DiMarco, S.F.; Hetland, R.D. A numerical study of sea-breeze-driven ocean Poincare wave propagation and mixing near the critical latitude. J. Phys. Oceanogr. 2010, 40, 48–66. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.; Lugo-Fernandez, A. Observations of high speed deep currents in the northern Gulf of Mexico. Geophys. Res. Lett. 2001, 28, 2867–2870. [Google Scholar] [CrossRef]
- Oey, L.; Lee, H. Deep eddy energy and topographic Rossby waves in the Gulf of Mexico. J. Phys. Oceanogr. 2002, 32, 3499–3527. [Google Scholar] [CrossRef]
- Hamilton, P. Topographic Rossby waves in the Gulf of Mexico. Prog. Oceanogr. 2009, 82, 1–31. [Google Scholar] [CrossRef]
- Spencer, L.J.; DiMarco, S.F.; Wang, Z.; Kuehl, J.J.; Brooks, D.A. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac. J. Geophys. Res. Oceans 2016, 121, 7619–7649. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Sarkar, S. Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr. 2008, 38, 2535–2555. [Google Scholar] [CrossRef] [Green Version]
- Weatherly, G.L.; Martin, P.J. On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr. 1978, 8, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Zilitinkevich, S.; Esau, I. On integral measures of the neutral barotropic planetary boundary layer. Bound. Layer Meteorol. 2002, 104, 371–379. [Google Scholar] [CrossRef]
- Zilitinkevich, S.; Baklanov, A. Calculation of the height of the stable boundary layer in practical applications. Bound. Layer Meteorol. 2002, 105, 389–409. [Google Scholar] [CrossRef]
- Perlin, A.; Moum, J.; Klymak, J.; Levine, M.; Boyd, T.; Kosro, P. Organization of stratification, turbulence, and veering in bottom Ekman layers. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, D.; Van Atta, C.; Helland, K. A laboratory study of the turbulent Ekman layer. Geophys. Fluid Dyn. 1972, 3, 125–160. [Google Scholar] [CrossRef]
- Pollard, R.T.; Rhines, P.B.; Thompson, R.O. The deepening of the wind-mixed layer. Geophys. Fluid Dyn. 1973, 4, 381–404. [Google Scholar] [CrossRef]
- Brink, K.H.; Lentz, S.J. Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr. 2010, 40, 621–635. [Google Scholar] [CrossRef] [Green Version]
- Garrett, C.; MacCready, P.; Rhines, P. Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech. 1993, 25, 291–323. [Google Scholar] [CrossRef]
- Trowbridge, J.; Lentz, S. Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr. 1991, 21, 1171–1185. [Google Scholar] [CrossRef] [Green Version]
- Umlauf, L.; Smyth, W.D.; Moum, J.N. Energetics of bottom Ekman layers during buoyancy arrest. J. Phys. Oceanogr. 2015, 45, 3099–3117. [Google Scholar] [CrossRef]
- Ruan, X.; Thompson, A.F.; Taylor, J.R. The Evolution and Arrest of a Turbulent Stratified Oceanic Bottom Boundary Layer over a Slope: Downslope Regime. J. Phys. Oceanogr. 2019, 49, 469–487. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, F.P. Momentum transport by gravity waves. Q. J. R. Meteorol. Soc. 1969, 95, 213–243. [Google Scholar] [CrossRef]
- Baines, P.G. Topographic Effects in Stratified Flows; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Thorpe, S.A. The generation of internal waves by flow over the rough topography of a continental slope. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1992, 439, 115–130. [Google Scholar]
- Leaman, K.D.; Sanford, T.B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res. 1975, 80, 1975–1978. [Google Scholar] [CrossRef]
- Benthuysen, J.; Thomas, L.N. Friction and diapycnal mixing at a slope: Boundary control of potential vorticity. J. Phys. Oceanogr. 2012, 42, 1509–1523. [Google Scholar] [CrossRef]
- Hoskins, B. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 1974, 100, 480–482. [Google Scholar] [CrossRef]
- Allen, J.; Newberger, P. On symmetric instabilities in oceanic bottom boundary layers. J. Phys. Oceanogr. 1998, 28, 1131–1151. [Google Scholar] [CrossRef]
- Trivett, D.; Terray, E.; Williams, A. Error analysis of an acoustic current meter. IEEE J. Ocean. Eng. 1991, 16, 329–337. [Google Scholar] [CrossRef]
- Shaw, W.J.; Trowbridge, J.H.; Williams, A.J., III. Budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. J. Geophys. Res. Oceans 2001, 106, 9551–9564. [Google Scholar] [CrossRef]
- Horne, E.P.W.; Toole, J.M. Sensor response mismatches and lag correction techniques for temperature-salinity profilers. J. Phys. Oceanogr. 1980, 10, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Gregg, M.; D’Asaro, E.; Riley, J.; Kunze, E. Mixing Efficiency in the Ocean. Annu. Rev. Mar. Sci. 2018, 10, 443–473. [Google Scholar] [CrossRef]
- Osborn, T.R.; Cox, C.S. Oceanic fine structure. Geophys. Fluid Dyn. 1972, 3, 321–345. [Google Scholar] [CrossRef]
- Polzin, K.L.; McDougal, T. Mixing at the Ocean’s Bottom Boundary. In Ocean Mixing; Meredith, M., Naveira Garabato, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. CR Acad. Sci. URSS 1941, 30, 301–305. [Google Scholar]
- Sreenivasan, K.R. On the universality of the Kolmogorov constant. Phys. Fluids 1995, 7, 2778–2784. [Google Scholar] [CrossRef] [Green Version]
- Gargett, A.; Osborn, T.; Nasmyth, P. Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 1984, 144, 231–280. [Google Scholar] [CrossRef]
- Sreenivasan, K.R. The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids 1996, 8, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Bouruet-Aubertot, P.; Van Haren, H.; Lelong, M.P. Stratified inertial subrange inferred from in situ measurements in the bottom boundary layer of the Rockall channel. J. Phys. Oceanogr. 2010, 40, 2401–2417. [Google Scholar] [CrossRef]
- Slinn, D.N.; Riley, J. A model for the simulation of turbulent boundary layers in an incompressible stratified flow. J. Comput. Phys. 1998, 144, 550–602. [Google Scholar] [CrossRef]
- Sarkar, S.; Scotti, A. From topographic internal gravity waves to turbulence. Annu. Rev. Fluid Mech. 2017, 49, 195–220. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Mashayek, A.; McDougall, T.J.; Nikurashin, M.; Campin, J.M. Turning Ocean Mixing Upside Down. J. Phys. Oceanogr. 2016, 46, 2239–2261. [Google Scholar] [CrossRef]
- Holleman, R.C.; Geyer, W.R.; Ralston, D.K. Stratified Turbulence and Mixing Efficiency in a Salt Wedge Estuary. J. Phys. Oceanogr. 2016, 46, 1769–1783. [Google Scholar] [CrossRef]
- Kaimal, J.; Wyngaard, J.; Izumi, Y.; Cote, O. Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 1972, 98, 563–589. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Thomas, L.N. On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech. 2012, 711, 620. [Google Scholar] [CrossRef] [Green Version]
- Van Haren, H.; Oakey, N.; Garrett, C. Measurements of internal wave band eddy fluxes above a sloping bottom. J. Mar. Res. 1994, 52, 909–946. [Google Scholar] [CrossRef] [Green Version]
- Gemmrich, J.R.; van Haren, H. Internal wave band eddy fluxes above a continental slope. J. Mar. Res. 2002, 60, 227–253. [Google Scholar] [CrossRef] [Green Version]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: New York, NY, USA, 2012; Volume 13. [Google Scholar]
- Garratt, J.R. The atmospheric boundary layer. Earth Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 1974, 31, 1791–1806. [Google Scholar] [CrossRef] [Green Version]
- Garrett, C. An isopycnal view of near-boundary mixing and associated flows. J. Phys. Oceanogr. 2001, 31, 138–142. [Google Scholar] [CrossRef]
- McDougall, T.J. Dianeutral advection. In Parameterization of Small-Scale Processes: Proceedings ‘Aha Huliko’ a Hawaiian Winter Workshop; Hawaii Institute of Geophysics Special Publication: Honolulu, HI, USA, 1989; pp. 289–315. [Google Scholar]
- De Lavergne, C.; Madec, G.; Le Sommer, J.; Nurser, A.G.; Naveira Garabato, A.C. On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 2016, 46, 635–661. [Google Scholar] [CrossRef] [Green Version]
- McDougall, T.J.; Ferrari, R. Abyssal Upwelling and Downwelling Driven by Near-Boundary Mixing. J. Phys. Oceanogr. 2017, 47, 261–283. [Google Scholar] [CrossRef]
- Kaiser, B.; Pratt, L.J. The transition to turbulence within internal tide boundary layers in the abyssal ocean. In Proceedings of the Ocean Sciences Meeting 2020, San Diego, CA, USA, 16–21 February 2020. [Google Scholar]
- Moum, J.; Perlin, A.; Klymak, J.; Levine, M.; Boyd, T.; Kosro, P. Convectively driven mixing in the bottom boundary layer. J. Phys. Oceanogr. 2004, 34, 2189–2202. [Google Scholar] [CrossRef]
- Shaw, W.J.; Williams, A.J.; Trowbridge, J.H. Measurement of turbulent sound speed fluctuations with an acoustic travel-time meter. In Proceedings of the OCEANS 96 MTS/IEEE Conference Proceedings, The Coastal Ocean-Prospects for the 21st Century, Fort Lauderdale, FL, USA, 23–26 September 1996; pp. 105–110. [Google Scholar]
Sensor | Variables | Sampling | & 2.8 Day | 2.8 Day | 8 Day | 2.8 Day | 8 Day | ||
---|---|---|---|---|---|---|---|---|---|
[m] | Interval [s] | [C] | [m s]&[C s] | [m s ] | [m s ] | [C s] | [C s] | ||
RDCP | u,v,w | (73) | 3600 | n/a | |||||
SBE-39 | T | 60 | 3 | 5.696 | |||||
SBE-39 | T | 47 | 3 | 5.631 | |||||
SBE-39 | T | 34 | 3 | 5.565 | |||||
SBE-39 | T | 13.5 | 3 | 5.473 | |||||
MAVS | u,v,w | 10 | 1/6.25 | ||||||
RBR | T | 10 | 0.5 | 5.462 | |||||
SBE-39 | T | 8 | 3 | 5.459 |
Sensor | U [m s] | V [m s] | W [m s] | [m s] | [m s] |
---|---|---|---|---|---|
RDCP 8.0 day | −0.185 | 0.009 | −0.018 | n/a | n/a |
RDCP 2.8 day | −0.189 | 0.003 | −0.017 | n/a | n/a |
MAVS 2.8 day | −0.17 | −0.12 | −0.019 | () | () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polzin, K.L.; Wang, B.; Wang, Z.; Thwaites, F.; Williams, A.J., III. Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico. Fluids 2021, 6, 237. https://doi.org/10.3390/fluids6070237
Polzin KL, Wang B, Wang Z, Thwaites F, Williams AJ III. Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico. Fluids. 2021; 6(7):237. https://doi.org/10.3390/fluids6070237
Chicago/Turabian StylePolzin, Kurt L., Binbin Wang, Zhankun Wang, Fred Thwaites, and Albert J. Williams, III. 2021. "Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico" Fluids 6, no. 7: 237. https://doi.org/10.3390/fluids6070237
APA StylePolzin, K. L., Wang, B., Wang, Z., Thwaites, F., & Williams, A. J., III. (2021). Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico. Fluids, 6(7), 237. https://doi.org/10.3390/fluids6070237