Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems
Abstract
:1. Introduction
2. Materials and Methods
2.1. RBF Background Theory
2.2. Parametric Mesh Formulation
2.3. Background to Modal Analysis and Modal Superposition
2.4. Modal Superposition for Static Analysis
2.5. Unsteady Analysis Modal Approach
2.6. Setup of Modal FSI Analysis
- Transient FSI in which structural displacements are known in advance and, therefore, imposed to the structure. It is the case of flapping devices experiencing complex motion, which was computed using FEA, multi-body, or observed in experimental tests. Acceleration of structural modes can be used to prepare ROM for non-linear flutter analysis;
- Steady FSI in which structural displacements are evaluated on the CFD mesh. It can be applied in aeronautical and motorsport applications, and can also be used to perform optimization considering coupled response. In some cases structural deflection can influence in a strong way the CFD mesh around wetted surfaces;
- Full coupled transient FSI in which the interaction between fluid flow and structure is captured by a time marching solution.
2.7. Setup of Non-Linear Imposed Wall Motion
3. Industrial Applications of FSI Modal Approach
3.1. Transient FSI with Prescribed Displacement Field Examples
3.2. Steady FSI Examples
3.3. Transient FSI Examples
3.4. Advanced Approaches for Limiting Mesh Distortion
4. Conclusions
Author Contributions
Funding
- RBF4AERO: Innovative benchmark technology for aircraft engineering design and efficient design phase optimisation, funded by the EU Seventh Framework Programme (FP7/2007-2013) under grant agreement 605396—https://cordis.europa.eu/project/id/605396;
- RIBES: Radial basis functions at fluid Interface Boundaries to Envelope flow results for advanced Structural analysis, funded by the EU Seventh Framework Programme (FP7/2007-2013) under grant agreement 632556—http://ribes-project.eu/;
- FORTISSIMO: Enabling Manufacturing SMEs to benefit from High Performance, Computerbased Simulations, funded by the EU Seventh Framework Programme (FP7/2007-2013) under grant agreement 609029—https://www.fortissimo-project.eu/;
- MEDITATE: the Medical Digital Twin for Aneurysm Prevention and Treatment, funded by EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 859836—https://meditate-project.eu/.
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbols
Weights of the polynomial corrector vector | |
RBF coefficients vector | |
Vector of modal coordinates | |
Damping factor | |
Radial function | |
Natural frequency | |
Vector of nodal forces | |
Known values of displacement | |
h | RBF correction polynomial |
Structural stiffness matrix | |
Position of a 3d point | |
Vector of source points | |
Structural mass matrix | |
Constraint matrix used for RBF fit | |
r | Euclidean distance between two points |
q | Generic polynomial |
Q | Nodal loads |
s | RBF interpolant |
Matrix of eigenvectors | |
Vector of structural displacements | |
Interpolation matrix used for RBF fit | |
Mesh nodes position | |
Mesh nodes in the undeformed position |
Definitions, Acronyms and Abbreviations
AePW | Aeroelastic prediction workshop |
CAE | Computer-aided engineering |
CFD | Computational fluid dynamics |
CSM | Computational structural mechanics |
DLM | Doublet lattice method |
FFD | Free-form deformation |
FEM | Finite element model |
FRF | Frequency response functions |
FSI | Fluid-structure interaction |
GAF | Generalized aerodynamic force |
RBF | Radial basis functions |
ROM | Reduced order model |
SMM | Standard mortar method |
References
- Bazilevs, Y.; Takizawa, K.; Tezduyar, T.E. Computational Fluid-Structure Interaction: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Morand, H.J.P.; Ohayon, R. Fluid-Structure Interaction: Applied Numerical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [Google Scholar] [CrossRef] [Green Version]
- Benra, F.K.; Dohmen, H.J.; Pei, J.; Schuster, S.; Wan, B. A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. J. Appl. Math. 2011, 2011, 853560. [Google Scholar] [CrossRef]
- Hou, G.; Wang, J.; Layton, A. Review Article: Numerical Methods for Fluid-Structure Interaction. Commun. Comput. Phys. 2012, 12, 337–377. [Google Scholar] [CrossRef]
- Dowell, E.H.; Hall, K.C. Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 2001, 33, 445–490. [Google Scholar] [CrossRef]
- Hübner, B.; Walhorn, E.; Dinkler, D. A monolithic approach to fluid–structure interaction using space–time finite elements. Comput. Methods Appl. Mech. Eng. 2004, 193, 2087–2104. [Google Scholar] [CrossRef]
- Degroote, J. Partitioned simulation of fluid-structure interaction. Arch. Comput. Methods Eng. 2013, 20, 185–238. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wüchner, R.; Sicklinger, S.; Bletzinger, K.U. Assessment and improvement of mapping algorithms for non-matching meshes and geometries in computational FSI. Comput. Mech. 2016, 57, 793–816. [Google Scholar] [CrossRef]
- Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 1982, 38, 181–200. [Google Scholar]
- Biancolini, M.; Chiappa, A.; Giorgetti, F.; Groth, C.; Cella, U.; Salvini, P. A balanced load mapping method based on radial basis functions and fuzzy sets. Int. J. Numer. Methods Eng. 2018, 115, 1411–1429. [Google Scholar] [CrossRef]
- Cebral, J.R.; Lohner, R. Conservative load projection and tracking for fluid-structure problems. AIAA J. 1997, 35, 687–692. [Google Scholar] [CrossRef]
- Hou, G.; Satyanarayana, A. Analytical sensitivity analysis of a static aeroelastic wing. In Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA, 6–8 September 2000; p. 4824. [Google Scholar]
- Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 2000, 161, 35–60. [Google Scholar] [CrossRef]
- Verzicco, R. Large–Eddy–Simulation of Complex Flows Using the Immersed Boundary Method. In Engineering Turbulence Modelling and Experiments 6; Elsevier: Amsterdam, The Netherlands, 2005; pp. 17–30. [Google Scholar]
- Cristallo, A.; Verzicco, R. Numerical Simulations of Blood Flow Inside a Mechanical Heart Valve. AIP Conf. Proc. Am. Inst. Phys. 2005, 762, 220–225. [Google Scholar]
- De Tullio, M.; Cristallo, A.; Balaras, E.; Verzicco, R. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 2009, 622, 259–290. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, I. Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 2013, 257, 103–116. [Google Scholar] [CrossRef]
- Tian, F.B.; Dai, H.; Luo, H.; Doyle, J.F.; Rousseau, B. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 2014, 258, 451–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, M.C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M.C.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M.S. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 2015, 55, 1211–1225. [Google Scholar] [CrossRef] [Green Version]
- Nestola, M.G.C.; Becsek, B.; Zolfaghari, H.; Zulian, P.; De Marinis, D.; Krause, R.; Obrist, D. An immersed boundary method for fluid-structure interaction based on variational transfer. J. Comput. Phys. 2019, 398, 108884. [Google Scholar] [CrossRef]
- Duarte, F.; Gormaz, R.; Natesan, S. Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Eng. 2004, 193, 4819–4836. [Google Scholar] [CrossRef]
- Donea, J.; Giuliani, S.; Halleux, J. An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 1982, 33, 689–723. [Google Scholar] [CrossRef]
- Rousseau, Y.; MEN’SHOV, I.; Nakamura, Y. Morphing-based shape optimization in computational fluid dynamics. Trans. Jpn. Soc. Aeronaut. Space Sci. 2007, 50, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Sederberg, T.W.; Parry, S.R. Free-form deformation of solid geometric models. ACM Siggraph Comput. Graph. 1986, 20, 151–160. [Google Scholar] [CrossRef]
- Xu, Z.; Accorsi, M. Finite element mesh update methods for fluid–structure interaction simulations. Finite Elem. Anal. Des. 2004, 40, 1259–1269. [Google Scholar] [CrossRef]
- Masud, A.; Bhanabhagvanwala, M.; Khurram, R.A. An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comput. Fluids 2007, 36, 77–91. [Google Scholar] [CrossRef]
- Biancolini, M.E. FSI Workflow Using Advanced RBF Mesh Morphing. In Fast Radial Basis Functions for Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 225–256. [Google Scholar]
- Geronzi, L.; Gasparotti, E.; Capellini, K.; Cella, U.; Groth, C.; Porziani, S.; Chiappa, A.; Celi, S.; Biancolini, M.E. High fidelity fluid-structure interaction by radial basis functions mesh adaption of moving walls: A workflow applied to an aortic valve. J. Comput. Sci. 2021, 51, 101327. [Google Scholar] [CrossRef]
- Capellini, K.; Gasparotti, E.; Cella, U.; Costa, E.; Fanni, B.; Groth, C.; Porziani, S.; Biancolini, M.; Celi, S. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data. Med. Eng. Phys. 2021, 91, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Groth, C.; Cella, U.; Costa, E.; Biancolini, M.E. Fast high fidelity CFD/CSM fluid structure interaction using RBF mesh morphing and modal superposition method. Aircr. Eng. Aerosp. Technol. 2019. [Google Scholar] [CrossRef]
- De Boer, A.; Van der Schoot, M.; Bijl, H. Mesh deformation based on radial basis function interpolation. Comput. Struct. 2007, 85, 784–795. [Google Scholar] [CrossRef]
- Beckert, A.; Wendland, H. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp. Sci. Technol. 2001, 5, 125–134. [Google Scholar] [CrossRef]
- Van Zuijlen, A.; de Boer, A.; Bijl, H. Higher-order time integration through smooth mesh deformation for 3D fluid–structure interaction simulations. J. Comput. Phys. 2007, 224, 414–430. [Google Scholar] [CrossRef]
- Griessmair, J.; Purgathofer, W. Deformation of Solids with Trivariate B-Splines; EG 1989-Technical Papers; Eurographics Association: Goslar, Lower Saxony, Germany, 1989. [Google Scholar] [CrossRef]
- Lamousin, H.J.; Waggenspack, W.N. NURBS-based free-form deformations. IEEE Comput. Graph. Appl. 1994, 14, 59–65. [Google Scholar] [CrossRef]
- Song, W.; Yang, X. Free-form deformation with weighted T-spline. Vis. Comput. 2005, 21, 139–151. [Google Scholar] [CrossRef]
- Belegundu, A.; Rajan, S. A shape optimization approach using fictitious loads as design variables. In Proceedings of the 28th Structures, Structural Dynamics and Materials Conference, Monterey, CA, USA, 6–8 April 1987; American Institute of Aeronautics and Astronautics: Reston, Virigina, 1987. [Google Scholar] [CrossRef]
- Zhang, S.; Belegundu, A.D. A systematic approach for generating velocity fields in shape optimization. Struct. Optim. 1992, 5, 84–94. [Google Scholar] [CrossRef]
- Choi, K.; Chang, K. A study of design velocity field computation for shape optimal design. Finite Elem. Anal. Des. 1994, 15, 317–341. [Google Scholar] [CrossRef]
- Biancolini, M.E. Mesh morphing and smoothing by means of radial basis functions (RBF): A practical example using fluent and RBF morph. In Handbook of Research on Computational Science and Engineering: Theory and Practice; IGI Global: Hershey, PA, USA, 2012; pp. 347–380. [Google Scholar]
- Groth, C. Adjoint-Based Shape Optimization Workflows Using RBF. Ph.D. Thesis, University of Rome Tor Vergata, Rome, Italy, 2015. [Google Scholar] [CrossRef]
- Cook, R.D. Concepts and Applications of Finite Element Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Meirovitch, L. Fundamentals of Vibrations; Waveland Press: Long Grove, IL, USA, 2010. [Google Scholar]
- Ritter, M. Static and forced motion aeroelastic simulations of the HIRENASD wind tunnel model. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012; p. 1633. [Google Scholar]
- Biancolini, M.E.; Cella, U.; Groth, C.; Genta, M. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating. J. Aerosp. Eng. 2016, 29, 04016061. [Google Scholar] [CrossRef]
- Chwalowski, P.; Heeg, J.; Dalenbring, M.; Jirasek, A.; Ritter, M.; Hansen, T. Collaborative HIRENASD analyses to eliminate variations in computational results. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD 2013), Bristol, UK, 24–26 June 2013; Volume 3. [Google Scholar]
- Abd-Rabbo, A.A. Flow Visualization and Dynamics of Heat Exchanger Tube Arrays in Water Cross-Flow. Ph.D. Thesis, McMaster University, Hamilton, ON, USA, 1984. [Google Scholar]
- Cella, U.; Della Vecchia, P.; Groth, C.; Porziani, S.; Chiappa, A.; Giorgetti, F.; Nicolosi, F.; Biancolini, M.E. Wind Tunnel Model Design and Aeroelastic Measurements of the RIBES Wing. J. Aerosp. Eng. 2021, 34, 04020109. [Google Scholar] [CrossRef]
- Biancolini, M.E.; Groth, C.; Porziani, S.; Chiappa, A.; Giorgetti, F.; Nicolosi, F.; Cella, U. Validation of Structural Modeling for Realistic Wing Topologies Involved in FSI Analyses: RIBES Test Case. J. Aerosp. Eng. 2021, 34, 04020110. [Google Scholar] [CrossRef]
- Ortega-Casanova, J.; Fernandez-Feria, R. Analysis of the aerodynamic interaction between two plunging plates in tandem at low Reynolds number for maximum propulsive efficiency. J. Fluids Struct. 2016, 63, 351–373. [Google Scholar] [CrossRef]
- Castronovo, P.; Mastroddi, F.; Stella, F.; Biancolini, M. Assessment and development of a ROM for linearized aeroelastic analyses of aerospace vehicles. CEAS Aeronaut. J. 2017, 8, 353–369. [Google Scholar] [CrossRef]
- Groth, C.; Biancolini, M.E.; Costa, E.; Cella, U. Validation of high fidelity computational methods for aeronautical FSI analyses. In Flexible Engineering Toward Green Aircraft; Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–48. [Google Scholar]
- Costa, E.; Groth, C.; Biancolini, M.E.; Asouti, V.; Giannakoglou, K.; Spisso, I.; Arlandini, C.; Sabellico, A.; Bernaschi, M.; Travostino, G.; et al. FSI optimization of industrial airplanes: The P180 Avanti EVO study. In Proceedings of the International CAE Conference 2018, Vicenza, Italy, 8–9 October 2018. [Google Scholar]
- Bernaschi, M.; Sabellico, A.; Urso, G.; Costa, E.; Porziani, S.; Lagasco, F.; Groth, C.; Cella, U.; Biancolini, M.; Kapsoulis, D.; et al. The RBF4AERO benchmark technology platform. In Proceedings of the ECCOMAS Congress 2016, Crete Island, Greece, 5–10 June 2016. [Google Scholar]
- Andrejašič, M.; Eržen, D.; Costa, E.; Porziani, S.; Biancolini, M.; Groth, C. A Mesh Morphing Based FSI Method Used in Aeronautical Optimization Applications. In Proceedings of the ECCOMAS Congress 2016, Crete Island, Greece, 5–10 June 2016. [Google Scholar]
- Di Domenico, N.; Groth, C.; Wade, A.; Berg, T.; Biancolini, M. Fluid structure interaction analysis: Vortex shedding induced vibrations. Procedia Struct. Integr. 2018, 8, 422–432. [Google Scholar] [CrossRef]
- Ausoni, P. Turbulent Vortex Shedding from a Blunt Trailing edge Hydrofoil; Technical Report; EPFL: Lausanne, Switzerland, 2009. [Google Scholar]
- Reina, G.; Della Sala, A.; Biancolini, M.; Groth, C.; Caridi, D. Store separation: Theoretical investigation of wing aeroelastic response. In Proceedings of the Aircraft Structural Design Conference, Belfast, UK, 7–9 October 2014. [Google Scholar]
- Costa, E.; Groth, C.; Lavedrine, J.; Caridi, D.; Dupain, G.; Biancolini, M.E. Unsteady FSI analysis of a square array of tubes in water crossflow. In Flexible Engineering Toward Green Aircraft; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–152. [Google Scholar]
- Felici, A.; Martínez-Pascual, A.; Groth, C.; Geronzi, L.; Porziani, S.; Cella, U.; Brutti, C.; Biancolini, M.E. Analysis of Vortex Induced Vibration of a Thermowell by High Fidelity FSI Numerical Analysis Based on RBF Structural Modes Embedding. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2021; pp. 465–478. [Google Scholar]
RBF with Global Support | |
---|---|
Spline type (Rn) | |
Thin plate spline | |
Multiquadric (MQ) | |
Inverse multiquadric (IMQ) | |
Inverse quadric (IQ) | |
Gaussian (GS) | |
RBF with Compact Support | |
Wendland C0 (C0) | |
Wendland C2 (C2) | |
Wendland C4 (C4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groth, C.; Porziani, S.; Biancolini, M.E. Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems. Fluids 2021, 6, 314. https://doi.org/10.3390/fluids6090314
Groth C, Porziani S, Biancolini ME. Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems. Fluids. 2021; 6(9):314. https://doi.org/10.3390/fluids6090314
Chicago/Turabian StyleGroth, Corrado, Stefano Porziani, and Marco Evangelos Biancolini. 2021. "Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems" Fluids 6, no. 9: 314. https://doi.org/10.3390/fluids6090314
APA StyleGroth, C., Porziani, S., & Biancolini, M. E. (2021). Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems. Fluids, 6(9), 314. https://doi.org/10.3390/fluids6090314