Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals in the Presence of a Horizontal Magnetic Field
Abstract
:1. Introduction
2. Numerical Method
2.1. Governing Equations
2.2. Solution Algorithm and Limitation of Time Increment
- Step 1.
- Calculate the electric potential ϕ, Equation (7).
- Step 2.
- Calculate the electrical current density j, Equation (5).
- Step 3.
- Calculate the Lorentz force FL, Equation (4).
- Step 4.
- Calculate the surface tension force Fγ, Equation (3).
- Step 5.
- Update the velocities and the pressure by means of the projection method, Equations (1) and (2).
- Step 6.
- Update the volume fraction α, Equation (8).
- Step 7.
- Advance the time step, and go back to Step 1.
2.3. Assumptions
3. Verification and Validation
3.1. Single-Phase Liquid-Metal Flow in a Square Channel
3.1.1. Grid Dependency Study
3.1.2. Comparisons against Analytical Solutions and Experiments
3.2. Rising Single Bubble in Liquid Metal
3.2.1. Grid Dependency Study
3.2.2. Comparison with the Measurements
4. Results and Discussion
4.1. Steady or Unsteady Bubble Rise Velocity and Bubble Shape
4.2. Wake Field
4.3. Trajectory of Rising Bubbles
4.4. Lorentz Force
4.4.1. Lorentz Force for Lower Magnetic Field
4.4.2. Lorentz Force for Higher Magnetic Field
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | |
CFD | computational fluid dynamics |
HMF | horizontal magnetic field |
MHD | magneto-hydro-dynamics |
UDV | ultrasound Doppler velocimetry |
VMF | vertical magnetic field |
VOF | volume of fluid |
Physical quantities | |
a | half channel width (m) |
B,B | magnetic flux density and flux density vector (T) |
B0 | applied static magnetic flux density (T) |
d | bubble diameter based on bubble volume (m) |
F | body force (N/m3) |
g | gravitational acceleration vector (m/s2) |
j | electrical current density vector (A/m2) |
k | applied pressure drop for channel flow (N/m3) |
LZ | computational domain height (m) |
t | time (s) |
u | flow velocity vector (m/s) |
terminal rise velocity (m/s) | |
u, v, w | velocity components in the x-, y- and z-directions, respectively (m/s) |
V | volume of computational cell (m3) |
α | volume fraction of liquid (–) |
γ | coefficient of surface tension (N/m) |
η | magnetic diffusivity (m2/s) |
μ | dynamic viscosity coefficient (Pa.s) |
ρ | density (kg/m3) |
σ | electrical conductivity (1/Ωm) |
ϕ | electric potential (V) |
ω | vorticity (1/s) |
Subscripts | |
g | gas |
L | Lorentz force |
l | liquid |
rel | relative |
Superscript | |
n | time step |
Dimensionless numbers | |
Cd | drag coefficient, |
Eo | Eötvös number, |
Ha | Hartmann number for a rising bubble, |
Hachannel | Hartmann number for channel flow, |
Mo | Morton number, |
N | Stuart number, |
Re | bubble Reynolds number, |
Rm | magnetic Reynolds number, |
References
- Mori, Y.; Hijikata, K.; Kuriyama, I. Experimental study of bubble motion in mercury with and without a magnetic field. J. Heat Trans. 1977, 99, 404–410. [Google Scholar] [CrossRef]
- Iguchi, M.; Nakatani, T.; Kawabata, H. Development of a multineedle electroresistivity probe for measuring bubble characteristics in molten metal baths. Metall. Mater. Trans. B 1997, 28, 409–416. [Google Scholar] [CrossRef]
- Eckert, S.; Gerbeth, G.; Lielausis, O. The behaviour of gas bubbles in a turbulent liquid metal magnetohydrodynamic flow: Part I: Dispersion in quasi-two-dimensional magnetohydrodynamic turbulence. Int. J. Multiph. Flow 2000, 26, 45–66. [Google Scholar] [CrossRef]
- Saito, Y.; Mishima, K.; Tobita, Y.; Suzuki, T.; Matsubayashi, M. Measurements of liquid-metal two-phase flow by using neutron radiography and electrical conductivity probe. Exp. Therm. Fluid Sci. 2005, 29, 323–330. [Google Scholar] [CrossRef]
- Zhang, C.; Eckert, S.; Gerbeth, G. Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. Int. J. Multiph. Flow 2005, 31, 824–842. [Google Scholar] [CrossRef]
- Zhang, C. Liquid Metal Flows Driven by Gas Bubbles in a Static Magnetic Field. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2009. [Google Scholar]
- Wang, Z.H.; Wang, S.D.; Meng, X.; Ni, M.J. UDV measurements of single bubble rising in a liquid metal Galinstan with a transverse magnetic field. Int. J. Multiph. Flow 2017, 94, 201–208. [Google Scholar] [CrossRef]
- Strumpf, E. Experimental study on rise velocities of single bubbles in liquid metal under the influence of strong horizontal magnetic fields in a flat vessel. Int. J. Multiph. Flow 2017, 97, 168–185. [Google Scholar] [CrossRef]
- Richter, T.; Keplinger, O.; Shevchenko, N.; Wondrak, T.; Eckert, K.; Eckert, S.; Odenbach, S. Single bubble rise in GaInSn in a horizontal magnetic field. Int. J. Multiph. Flow 2018, 104, 32–41. [Google Scholar] [CrossRef]
- Keplinger, O.; Shevchenko, N.; Eckert, S. Visualization of bubble coalescence in bubble chains rising in a liquid metal. Int. J. Multiph. Flow 2018, 105, 159–169. [Google Scholar] [CrossRef]
- Keplinger, O.; Shevchenko, N.; Eckert, S. Experimental investigation of bubble breakup in bubble chains rising in a liquid metal. Int. J. Multiph. Flow 2019, 116, 39–50. [Google Scholar] [CrossRef]
- Saito, Y.; Mishima, K.; Tobita, Y.; Suzuki, T.; Matsubayashi, M.; Lim, I.C.; Cha, J.E. Application of high frame-rate neutron radiography to liquid-metal two-phase flow research. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 542, 168–174. [Google Scholar] [CrossRef]
- Birjukovs, M.; Dzelme, V.; Jakovics, A.; Thomsen, K.; Trtik, P. Phase boundary dynamics of bubble flow in a thick liquid metal layer under an applied magnetic field. Phys. Rev. Fluids 2020, 5, 061601. [Google Scholar] [CrossRef]
- Birjukovs, M.; Dzelme, V.; Jakovics, A.; Thomsen, K.; Trtik, P. Argon bubble flow in liquid gallium in external magnetic field. Int. J. Appl. Electromagn. Mech. 2020, 63, S51–S57. [Google Scholar] [CrossRef]
- Birjukovs, M.; Trtik, P.; Kaestner, A.; Hovind, J.; Klevs, M.; Gawryluk, D.J.; Thomsen, K.; Jakovics, A. Resolving gas bubbles ascending in liquid metal from low-SNR neutron radiography images. Appl. Sci. 2021, 11, 9710. [Google Scholar] [CrossRef]
- Shibasaki, Y.; Ueno, K.; Tagawa, T. Computation of a rising bubble in an enclosure filled with liquid metal under vertical magnetic fields. ISIJ Int. 2010, 50, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Kumar, P.; Vanka, S.P.; Thomas, B.G. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field. Phys. Fluids 2016, 28, 093301. [Google Scholar] [CrossRef]
- Zhang, J.; Ni, M.-J.; Moreau, R. Rising motion of a single bubble through a liquid metal in the presence of a horizontal magnetic field. Phys. Fluids 2016, 28, 032101. [Google Scholar] [CrossRef]
- Zhang, J.; Sahu, K.C.; Ni, M.-J. Transition of bubble motion from spiralling to zigzagging: A wake-controlled mechanism with a transverse magnetic field. Int. J. Multiph. Flow 2021, 136, 103551. [Google Scholar] [CrossRef]
- Takeda, Y. Ultrasonic Doppler Velocity Profiler for Fluid Flow; Takeda, Y., Ed.; Springer: Tokyo, Japan, 2012; p. 274. [Google Scholar]
- Schwarz, S.; Fröhlich, J. Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field. Int. J. Multiph. Flow 2014, 62, 134–151. [Google Scholar] [CrossRef]
- Zhang, J.; Ni, M.-J. Direct simulation of single bubble motion under vertical magnetic field: Paths and wakes. Phys. Fluids 2014, 26, 102102. [Google Scholar] [CrossRef]
- Bureš, L.; Sato, Y.; Pautz, A. Piecewise linear interface-capturing volume-of-fluid method in axisymmetric cylindrical coordinates. J. Comput. Phys. 2021, 436, 110291. [Google Scholar] [CrossRef]
- Bureš, L.; Sato, Y. Direct numerical simulation of evaporation and condensation with the geometric VOF method and a sharp-interface phase-change model. Int. J. Heat Mass Trans. 2021, 173, 121233. [Google Scholar] [CrossRef]
- Chorin, A.J. Numerical solution of the Navier-Stokes equations. Math. Comp. 1968, 22, 745–762. [Google Scholar] [CrossRef]
- Harlow, F.H.; Welch, J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 1965, 8, 2182–2189. [Google Scholar] [CrossRef]
- Roe, P.L. Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- López, J.; Zanzi, C.; Gómez, P.; Zamora, R.; Faura, F.; Hernández, J. An improved height function technique for computing interface curvature from volume fractions. Comput. Methods Appl. Mech. Eng. 2009, 198, 2555–2564. [Google Scholar] [CrossRef]
- Knaepen, B.; Moreau, R. Magnetohydrodynamic turbulence at low magnetic reynolds number. Annu. Rev. Fluid Mech. 2008, 40, 25–45. [Google Scholar] [CrossRef]
- Moreau, R. The equations of magnetohydrodynamics. In Magnetohydrodynamics; Springer: Dordrecht, The Netherlands, 1990; pp. 1–31. [Google Scholar]
- Ni, M.-J.; Munipalli, R.; Morley, N.B.; Huang, P.; Abdou, M.A. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comput. Phys. 2007, 227, 174–204. [Google Scholar] [CrossRef]
- Youngs, D.L. Time-dependent multi-material flow with large fluid distortion. In Numerical Methods for Fluid Dynamics; Morton, K.W., Baines, M.J., Eds.; Academic Press: New York, NY, USA, 1982; pp. 273–285. [Google Scholar]
- Weymouth, G.D.; Yue, D.K.P. Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids. J. Comput. Phys. 2010, 229, 2853–2865. [Google Scholar] [CrossRef]
- van der Vorst, H.A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1992, 13, 631–644. [Google Scholar] [CrossRef]
- Stoer, J. Solution of large linear systems of equations by conjugate gradient type methods. In Mathematical Programming The State of the Art; Bachem, A., Korte, B., Grötschel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Xu, J.; Zikatanov, L. Algebraic multigrid methods. Acta Numer. 2017, 26, 591–721. [Google Scholar] [CrossRef] [Green Version]
- Shercliff, J.A. Steady motion of conducting fluids in pipes under transverse magnetic fields. Math. Proc. Camb. Philos. Soc. 1953, 49, 136–144. [Google Scholar] [CrossRef]
- Hartmann, J.; Lazarus, F. Hg-dynamics II. Experimental investigations on the flow of mercury in a homogeneous magnetic field. Kgl. Dan. Vidensk. Selskab. Math. Fys. Medd. 1937, 15, 1–45. [Google Scholar]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa Publishers: Albuquerque, NM, USA, 1998. [Google Scholar]
- Eça, L.; Vaz, G.; Toxopeus, S.L.; Hoekstra, M. Numerical errors in unsteady flow simulations. J. Verif. Valid. Uncertain. Quantif. 2019, 4, 021001. [Google Scholar] [CrossRef]
- Tomiyama, A.; Kataoka, I.; Zun, I.; Sakaguchi, T. Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int. J. Ser. B Fluids Therm. Eng. 1998, 41, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Marrucci, G.; Apuzzo, G.; Astarita, G. Motion of liquid drops in non-Newtonian systems. AIChE J. 1970, 16, 538–541. [Google Scholar] [CrossRef]
- Mendelson, H.D. The prediction of bubble terminal velocities from wave theory. AIChE J. 1967, 13, 250–253. [Google Scholar] [CrossRef]
- Haas, T.; Schubert, C.; Eickhoff, M.; Pfeifer, H. A review of bubble dynamics in liquid metals. Metals 2021, 11, 664. [Google Scholar] [CrossRef]
- Frumkin, A.; Levich, V.G. On surfactants and interfacial motion. Zhurnal Fiz. Khimii 1947, 21, 1183–1204. [Google Scholar]
- Grace, J.R.; Wairegi, T.; Nguyen, T.H. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Trans. Inst. Chem. Eng. 1976, 54, 167–173. [Google Scholar]
Grid Index | Nx | Ny | Nz | dx (×10−2 a) | dy (×10−2 a) | dz (×10−2 a) | ||
---|---|---|---|---|---|---|---|---|
Equal Spacing | Min | Max | Min | Max | ||||
1.00 | 16 | 256 | 128 | 1.56 | 0.39 | 0.98 | 0.78 | 1.96 |
1.33 | 12 | 192 | 96 | 2.08 | 0.52 | 1.31 | 1.04 | 2.62 |
2.00 | 8 | 128 | 64 | 3.13 | 0.78 | 1.96 | 1.56 | 3.92 |
2.67 | 6 | 96 | 48 | 4.17 | 1.04 | 2.61 | 2.08 | 5.23 |
4.00 | 4 | 64 | 32 | 6.25 | 1.56 | 3.92 | 3.13 | 7.85 |
Material | Density (kg/m3) | Viscosity (Pa.s) | Electrical Conductivity (1/Ωm) | Surface Tension Coefficient (N/m) |
---|---|---|---|---|
Ar | 1.654 | 1.176 × 10−5 | 1.000 × 10−15 | 0.553 |
GaInSn | 6.362 × 103 | 2.200 × 10−3 | 3.270 × 106 |
Case | B0 (T) | d (mm) | Eo | Mo | Ha | LZ |
---|---|---|---|---|---|---|
G-B0 | 0 | 5.6 | 3.67 | 2.38 × 10−13 | 0 | 48d |
G-B2 | 1.97 | 5.6 | 3.67 | 2.38 × 10−13 | 425 | 24d |
Grid Index | d/Δx |
---|---|
1.00 | 21.3 |
1.33 | 16.0 |
1.60 | 13.3 |
2.00 | 10.7 |
2.67 | 8.0 |
d (mm) | Eo | Magnetic Field B0 and Domain Height LZ: (B0(T), LZ (d)) |
---|---|---|
3.10 | 1.12 | (0, 96), (0.14, 48), (0.28, 48), (0.56, 24), (1.12, 24), (1.97, 24) |
3.40 | 1.35 | (0, 96) |
4.57 | 2.44 | (0, 48), (0.14, 48), (0.28, 48), (0.56, 24), (1.12, 24), (1.97, 24) |
5.15 | 3.10 | (0, 48) |
5.60 | 3.67 | (0, 48), (0.14, 48), (0.28, 24), (0.56, 24), (1.12, 24), (1.97, 24) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, M.; Sato, Y. Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals in the Presence of a Horizontal Magnetic Field. Fluids 2022, 7, 349. https://doi.org/10.3390/fluids7110349
Corrado M, Sato Y. Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals in the Presence of a Horizontal Magnetic Field. Fluids. 2022; 7(11):349. https://doi.org/10.3390/fluids7110349
Chicago/Turabian StyleCorrado, Marino, and Yohei Sato. 2022. "Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals in the Presence of a Horizontal Magnetic Field" Fluids 7, no. 11: 349. https://doi.org/10.3390/fluids7110349
APA StyleCorrado, M., & Sato, Y. (2022). Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals in the Presence of a Horizontal Magnetic Field. Fluids, 7(11), 349. https://doi.org/10.3390/fluids7110349