Parametric Study of the Ground-Air Heat Exchanger (GAHE): Effect of Burial Depth and Insulation Length
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Model
2.2. Mathematical Model
- -
- Incompressible flow in laminar regime.
- -
- The soil is considered as a solid and isotropic medium.
- -
- Boussinesq approximation: density is assumed constant except in the gravity term in the momentum equations where it is varied linearly [30].
- -
- Radiatively non-participating fluid.
- -
- For the entire non-fluid domain (soil and thermal insulator), the blocking technique is applied, which implies defining with a value of 0 permanently all flow variables at all nodes of the solid domain (u = v = P = 0) so that for the solid domain only conduction heat transfer is evaluated [31].
2.3. Boundary Conditions
2.4. Methodology
2.4.1. Mesh Independence Analysis
2.4.2. Numerical Model Validation
3. Results and Discussion
3.1. Results of the Parametric Study
3.2. Optimum Burial Depth and Insulation Length
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Xiong, R.; Li, H.; Sun, Q.; Yang, J. Pathways for sustainable energy transition. J. Clean. Prod. 2019, 228, 1564–1571. [Google Scholar] [CrossRef]
- da Fonseca, A.L.; Chvatal, K.M.; Fernandes, R.A. Thermal comfort maintenance in demand response programs: A critical review. Renew. Sustain. Energy Rev. 2021, 141, 110847. [Google Scholar] [CrossRef]
- Mui, K.; Tsang, T.W.; Wong, L. Bayesian updates for indoor thermal comfort models. J. Build. Eng. 2019, 29, 101117. [Google Scholar] [CrossRef]
- Cao, S.; Li, F.; Li, X.; Yang, B. Feasibility analysis of Earth-Air Heat Exchanger (EAHE) in a sports and culture center in Tianjin, China. Case Stud. Therm. Eng. 2021, 26, 101054. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Misra, R.; Das Agrawal, G. To study the effect of different parameters on the thermal performance of ground-air heat exchanger system: In situ measurement. Renew. Energy 2019, 146, 2070–2083. [Google Scholar] [CrossRef]
- Ahmad, H.; Sakhri, N.; Menni, Y.; Omri, M.; Ameur, H. Experimental study of the efficiency of earth-to-air heat exchangers: Effect of the presence of external fans. Case Stud. Therm. Eng. 2021, 28, 101461. [Google Scholar] [CrossRef]
- García-Ochoa, R.; Graizbord, B. Caracterización espacial de la pobreza energética en México. Un análisis a escala subnacional. Economía. Soc. Y Territ. 2016, XVI, 289–337. [Google Scholar]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
- Bordoloi, N.; Sharma, A.; Nautiyal, H.; Goel, V. An intense review on the latest advancements of Earth Air Heat Exchangers. Renew. Sustain. Energy Rev. 2018, 89, 261–280. [Google Scholar] [CrossRef]
- Serageldin, A.A.; Abdelrahman, A.K.; Ookawara, S. Earth-Air Heat Exchanger thermal performance in Egyptian conditions: Experimental results, mathematical model, and Computational Fluid Dynamics simulation. Energy Convers. Manag. 2016, 122, 25–38. [Google Scholar] [CrossRef]
- Benhammou, M.; Draoui, B.; Zerrouki, M.; Marif, Y. Performance analysis of an earth-to-air heat exchanger assisted by a wind tower for passive cooling of buildings in arid and hot climate. Energy Convers. Manag. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Goudarzi, H.; Khanmohammadi, M.; Jahangiri, M.; Sedaghat, A.; Norouzianpour, H.; Chowdhury, S.; Techato, K.; Issakhov, A.; Almutairi, K.; et al. Techno-economic analysis and energy performance of a geothermal earth-to-air heat exchanger (EAHE) system in residential buildings: A case study. Energy Sci. Eng. 2021, 9, 1807–1825. [Google Scholar] [CrossRef]
- Wei, H.; Yang, D. Performance evaluation of flat rectangular earth-to-air heat exchangers in harmonically fluctuating thermal environments. Appl. Therm. Eng. 2019, 162, 114262. [Google Scholar] [CrossRef]
- Rosa, N.; Soares, N.; Costa, J.; Santos, P.; Gervásio, H. Assessment of an earth-air heat exchanger (EAHE) system for residential buildings in warm-summer Mediterranean climate. Sustain. Energy Technol. Assess. 2020, 38, 100649. [Google Scholar] [CrossRef]
- Lekhal, M.C.; Benzaama, M.-H.; Kindinis, A.; Mokhtari, A.-M.; Belarbi, R. Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers. Renew. Energy 2020, 163, 22–40. [Google Scholar] [CrossRef]
- Chiesa, G.; Zajch, A. Contrasting climate-based approaches and building simulations for the investigation of Earth-to-air heat exchanger (EAHE) cooling sensitivity to building dimensions and future climate scenarios in North America. Energy Build. 2020, 227, 110410. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Misra, R.; Agrawal, G.D.; Bhardwaj, M.; Jamuwa, D.K. The state of art on the applications, technology integration, and latest research trends of earth-air-heat exchanger system. Geothermics 2019, 82, 34–50. [Google Scholar] [CrossRef]
- Darius, D.; Misaran, M.S.; Rahman, M.; Ismail, M.A.; Amaludin, A. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 217, 12021. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.A.O.; García, S.L.M.; Cerutti, O.R.M. Ecotecnología y sustentabilidad: Una aproximación para el sur global. INTER Discip. 2015, 3, 193–215. [Google Scholar]
- Cárcel Carrasco, F.J.; Martínez Márquez, D. La energía geotérmica de baja entalpía. 3c Tecnol. 2015, 4, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Liu, X.-B.; Ji, L.; Mu, J.-Y. A numerical model of a deeply buried air-earth tunnel heat exchanger. Energy Build. 2012, 48, 233–239. [Google Scholar] [CrossRef]
- Hernández, D.; Paola, H.; Castro, A.; María, K.; Melo, M.; Vicente, E. Diseño de un intercambiador de calor tierra-aire en clima cálido-húmedo. Rev. Del Desarro. Tecnológico 2017, 1, 44–51. [Google Scholar]
- Kaushal, M. Geothermal cooling/heating using ground heat exchanger for various experimental and analytical studies: Comprehensive review. Energy Build. 2017, 139, 634–652. [Google Scholar] [CrossRef]
- Rodrigues, M.K.; Vaz, J.; Rocha, L.A.O.; dos Santos, E.D.; Isoldi, L.A. A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation. Renew. Energy 2022, 191, 535–556. [Google Scholar] [CrossRef]
- Badescu, V. Simple and accurate model for the ground heat exchanger of a passive house. Renew. Energy 2007, 32, 845–855. [Google Scholar] [CrossRef]
- Xamán, J.; Hernández-López, I.; Alvarado-Juárez, R.; Hernández-Pérez, I.; Álvarez, G.; Chávez, Y. Pseudo transient numerical study of an earth-to-air heat exchanger for different climates of México. Energy Build. 2015, 99, 273–283. [Google Scholar] [CrossRef]
- Díaz-Hernández, H.; Macias-Melo, E.; Aguilar-Castro, K.; Hernández-Pérez, I.; Xamán, J.; Serrano-Arellano, J.; López-Manrique, L. Experimental study of an earth to air heat exchanger (EAHE) for warm humid climatic conditions. Geothermics 2019, 84, 101741. [Google Scholar] [CrossRef]
- Zawawi, M.H.; Saleha, A.; Salwa, A.; Hassan, N.H.; Zahari, N.M.; Ramli, M.Z.; Muda, Z.C. A review: Fundamentals of computational fluid dynamics (CFD). In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018; Volume 2030, p. 020252. [Google Scholar]
- Rodríguez-Vázquez, M.; Xamán, J.; Chávez, Y.; Hernández-Pérez, I.; Simá, E. Thermal potential of a geothermal earth-to-air heat exchanger in six climatic conditions of México. Mech. Ind. 2020, 21, 308. [Google Scholar] [CrossRef] [Green Version]
- Mayeli, P.; Sheard, G.J. Buoyancy-driven flows beyond the Boussinesq approximation: A brief review. Int. Commun. Heat Mass Transf. 2021, 125, 105316. [Google Scholar] [CrossRef]
- Villaseñor, J.P.X. Dinámica de Fluidos Computacional Para Ingenieros; EU Editorial Palibrio: Bloomington Illinois, IN, USA, 2016. [Google Scholar]
- Mihalakakou, G.; Santamouris, M.; Lewis, J.; Asimakopoulos, D. On the application of the energy balance equation to predict ground temperature profiles. Sol. Energy 1997, 60, 181–190. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Volume Finite Method, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2007. [Google Scholar]
- Baruch, G. Passive and Low Energy Cooling of Buildings; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Manuel, V.; Feria, A. Estudio Experimental del Desempeño Térmico de un Intercambiador de Calor Tierra Aire en la Ciudad de Chetumal Quintana Roo. [Tesis Maestría. Universidad de Quintana Roo, División de Ciencias e Ingeniería: Chetumal, Mexico, 2016. [Google Scholar]
- Becerra, G.; Picazo, M.; Aguilar, J.O.; Xamán, J.; Osorio, E.; Hernandez, J.; Ledesma-Alonso, R. Experimental study of a geothermal earth-to-air heat exchanger in Chetumal, Quintana Roo, Mexico. Energy Effic. 2022, 15, 20. [Google Scholar] [CrossRef]
- Cuny, M.; Lin, J.; Siroux, M.; Fond, C. Influence of rainfall events on the energy performance of an earth-air heat exchanger embedded in a multilayered soil. Renew. Energy 2019, 147, 2664–2675. [Google Scholar] [CrossRef]
- Xamán, J.; Hernández-Pérez, I.; Arce, J.; Álvarez, G.; Ramírez-Dávila, L.; Noh-Pat, F. Numerical study of earth-to-air heat exchanger: The effect of thermal insulation. Energy Build. 2014, 85, 356–361. [Google Scholar] [CrossRef]
Variable | Symbol (Unit) | Variable | Symbol (Unit) |
---|---|---|---|
Thermal conductivity constant | (W/m°C) | Density | (kg/m3) |
Specific heat at constant pressure | (J/kg°C) | Conductive heat flux | Qcond (W/m2) |
Temperature | (°C) | Convective heat flux | Qconv (W/m2) |
Overall horizontal length | Hx (m) | Evaporative heat flux | Qevap (W/m2) |
Overall vertical length | Hy (m) | Solar irradiance | Gb (W/m2) |
Number of horizontal nodes | Nx | Vertical velocity component | (m/s) |
Number of vertical nodes | Ny | Horizontal velocity component | (m/s) |
Horizontal element size | (m) | Pressure | P (Pa) |
Vertical element size | (m) | Soil-to-air convection coefficient | (W/m2°C) |
Horizontal nodal distance | (m) | Emissivity coefficient | ɛ |
Vertical nodal distance | (m) | Absorptivity coefficient | |
Source term | g (W) | Dynamic viscosity | (Pa·s) |
Dimensions | Value |
---|---|
Total depth (Hy) | 3.15 m. |
Total length (Hx) | 6.3 m. |
Hy1 | 2 m. |
Hx3 | 5 m. |
Hy3 | 1 m. |
Hx1 = Hx5 | 0.5 m. |
Insulation thickness (e) | 0.05 m. |
Diameter = Hy2 = Hx2 = Hx4 = D | 0.15 m. |
Number of Nodes Diameter | Average Outlet Temperature (°C) | Computing Time (Hours) |
---|---|---|
57 | 21.53 | 1.47 |
71 | 21.94 | 1.34 |
87 | 22.31 | 1.27 |
101 | 22.63 | 1.48 |
117 | 22.73 | 2.08 |
Number of Nodes (H × V) | Average Outlet Temperature (°C) | Computing Time (Hours) |
---|---|---|
57 × 57 | 22.69 | 1.20 |
71 × 71 | 22.65 | 1.37 |
87 × 87 | 22.60 | 1.42 |
101 × 101 | 22.63 | 1.49 |
117 × 117 | 22.59 | 1.67 |
Date | Hour | Solar Irradiance (W/m2) | Air Relative Humidity (%) | Wind Speed (m/s) | Environment Temperature (°C) |
---|---|---|---|---|---|
30/07/2016 | 1 | 0 | 84.17 | 4.02 | 28.72 |
30/07/2016 | 2 | 0 | 83.83 | 3.65 | 28.63 |
30/07/2016 | 3 | 0 | 82.83 | 3.27 | 28.73 |
30/07/2016 | 4 | 0 | 82.5 | 3.52 | 28.68 |
30/07/2016 | 5 | 0 | 84 | 3.27 | 28.6 |
30/07/2016 | 6 | 0 | 83.5 | 3.6 | 28.58 |
30/07/2016 | 7 | 4.67 | 83.83 | 3.35 | 28.43 |
30/07/2016 | 8 | 105.83 | 83.33 | 3.27 | 28.73 |
30/07/2016 | 9 | 319.17 | 81.5 | 3.27 | 29.12 |
30/07/2016 | 10 | 544.67 | 80 | 2.53 | 29.63 |
30/07/2016 | 11 | 790.5 | 75.83 | 1.83 | 30.48 |
30/07/2016 | 12 | 910.33 | 72.67 | 2.53 | 31.03 |
30/07/2016 | 13 | 952.33 | 69.33 | 2.3 | 31.52 |
30/07/2016 | 14 | 972 | 65.17 | 2.83 | 31.85 |
30/07/2016 | 15 | 913.67 | 65.83 | 2.75 | 31.97 |
30/07/2016 | 16 | 797 | 65.83 | 2.68 | 32.07 |
30/07/2016 | 17 | 626.5 | 64.33 | 2.7 | 32.08 |
30/07/2016 | 18 | 427.17 | 67.33 | 3.27 | 31.72 |
30/07/2016 | 19 | 195.17 | 73.67 | 4.1 | 30.52 |
30/07/2016 | 20 | 13.83 | 78 | 2.97 | 29.77 |
30/07/2016 | 21 | 0 | 91.25 | 2.2 | 28.74 |
30/07/2016 | 22 | 0 | 93.59 | 2.72 | 29.3 |
30/07/2016 | 23 | 0 | 93.56 | 3.1 | 28.94 |
30/07/2016 | 24 | 0 | 93.5 | 2.69 | 28.24 |
09/08/2016 | 1 | 0 | 87.17 | 2.62 | 28.72 |
09/08/2016 | 2 | 0 | 87.83 | 2.77 | 28.67 |
09/08/2016 | 3 | 0 | 88.33 | 3.1 | 28.58 |
09/08/2016 | 4 | 0 | 88.5 | 2.62 | 28.47 |
09/08/2016 | 5 | 0 | 88.5 | 1.7 | 28.43 |
09/08/2016 | 6 | 0 | 89 | 1.03 | 28.5 |
09/08/2016 | 7 | 3.67 | 88.83 | 1.92 | 28.53 |
09/08/2016 | 8 | 74.33 | 88.17 | 2.77 | 28.67 |
09/08/2016 | 9 | 345.33 | 84.67 | 2.53 | 29.6 |
09/08/2016 | 10 | 570.17 | 82.33 | 2.75 | 30.22 |
09/08/2016 | 11 | 747.33 | 76.67 | 3.15 | 31.22 |
09/08/2016 | 12 | 886.67 | 75.83 | 2.83 | 31.62 |
09/08/2016 | 13 | 960.5 | 78 | 2.23 | 31.75 |
09/08/2016 | 14 | 970.83 | 77.67 | 3.2 | 31.52 |
09/08/2016 | 15 | 915.17 | 78.83 | 4.43 | 31.33 |
09/08/2016 | 16 | 793.17 | 81.33 | 3.18 | 31.13 |
09/08/2016 | 17 | 617.33 | 80.67 | 3.43 | 31.22 |
09/08/2016 | 18 | 406.33 | 80.5 | 3.03 | 31.1 |
09/08/2016 | 19 | 149.33 | 81.83 | 2.53 | 30.68 |
09/08/2016 | 20 | 5.33 | 83.17 | 3.2 | 30.08 |
09/08/2016 | 21 | 0 | 85.67 | 3.58 | 29.57 |
09/08/2016 | 22 | 0 | 87 | 2.27 | 29.23 |
09/08/2016 | 23 | 0 | 87.33 | 4.17 | 29.05 |
09/08/2016 | 24 | 0 | 88.17 | 3.87 | 28.85 |
Time | Experimental Outlet Temperature (°C) | Outlet Temperature (°C) for Re = 500 | Relative Error (%) |
---|---|---|---|
1 | 28.95 | 27.3 | 5.7 |
2 | 28.95 | 27.2 | 6.04 |
3 | 28.99 | 27.2 | 6.17 |
4 | 28.95 | 27.16 | 6.18 |
5 | 28.92 | 27.16 | 6.09 |
6 | 28.91 | 27.14 | 6.12 |
7 | 28.86 | 27.05 | 6.27 |
8 | 29.04 | 27.6 | 4.96 |
9 | 29.47 | 28.54 | 3.16 |
10 | 30.03 | 29.53 | 1.67 |
11 | 30.91 | 32.68 | −5.73 |
12 | 30.94 | 32.22 | −4.14 |
13 | 31.76 | 32.87 | −3.49 |
14 | 31.5 | 32.35 | −2.7 |
15 | 31.41 | 32.32 | −2.9 |
16 | 31.37 | 31.97 | −1.91 |
17 | 31.03 | 31.18 | −0.48 |
18 | 30.74 | 30.06 | 2.21 |
19 | 30.27 | 28.65 | 5.35 |
20 | 29.79 | 27.74 | 6.88 |
21 | 25.39 | 27.51 | −8.35 |
22 | 25.53 | 28.09 | −10.03 |
23 | 26.48 | 27.85 | −5.17 |
24 | 27.93 | 27.3 | 2.26 |
Average Error. | 4.75 |
Time | Experimental Outlet Temperature (°C) | Outlet Temperature (°C) for Re = 500 | Relative Error (%) |
---|---|---|---|
1 | 28.66 | 26.62 | 7.12 |
2 | 28.68 | 26.48 | 7.67 |
3 | 28.72 | 26.43 | 7.97 |
4 | 28.68 | 26.39 | 7.98 |
5 | 28.65 | 26.43 | 7.75 |
6 | 28.64 | 26.44 | 7.68 |
7 | 28.58 | 26.32 | 7.91 |
8 | 28.78 | 27.15 | 5.66 |
9 | 29.36 | 28.65 | 2.42 |
10 | 29.88 | 31.03 | −3.85 |
11 | 30.74 | 34.74 | −13.01 |
12 | 31.25 | 34.26 | −9.63 |
13 | 31.51 | 35.16 | −11.58 |
14 | 31.55 | 34.05 | −7.92 |
15 | 31.73 | 33.92 | −6.9 |
16 | 31.67 | 33.25 | −4.99 |
17 | 31.18 | 31.82 | −2.05 |
18 | 30.74 | 29.99 | 2.44 |
19 | 30.25 | 28.08 | 7.17 |
20 | 29.7 | 26.86 | 9.56 |
21 | 26.86 | 26.98 | −0.45 |
22 | 27.28 | 27.73 | −1.65 |
23 | 27.44 | 27.5 | −0.22 |
24 | 27.07 | 26.87 | 0.74 |
Average Error | 6.01 |
Time | Experimental outlet Temperature (°C) | Outlet Temperature (°C) for Re = 500 | Relative Error (%) |
---|---|---|---|
1 | 28.43 | 27.34 | 3.83 |
2 | 28.4 | 27.35 | 3.7 |
3 | 28.38 | 27.33 | 3.7 |
4 | 28.34 | 27.22 | 3.95 |
5 | 28.31 | 27.06 | 4.42 |
6 | 28.22 | 26.96 | 4.46 |
7 | 28.28 | 27.21 | 3.78 |
8 | 28.44 | 27.66 | 2.74 |
9 | 29.18 | 29.33 | −0.51 |
10 | 29.75 | 30.5 | −2.52 |
11 | 30.38 | 31.36 | −3.23 |
12 | 30.66 | 32.37 | −5.58 |
13 | 30.65 | 33.58 | −9.56 |
14 | 30.79 | 32.4 | −5.23 |
15 | 30.75 | 31.41 | −2.15 |
16 | 30.61 | 31.68 | −3.5 |
17 | 30.11 | 30.97 | −2.86 |
18 | 29.8 | 30.28 | −1.61 |
19 | 29.53 | 29.12 | 1.39 |
20 | 29.3 | 28.19 | 3.79 |
21 | 29 | 27.95 | 3.62 |
22 | 28.84 | 27.66 | 4.09 |
23 | 28.72 | 27.69 | 3.59 |
24 | 28.61 | 27.57 | 3.64 |
Average Error. | 3.64 |
Condition | Solar Irradiance (W/m2) | Air Relative Humidity (%) | Humidity of Soil (%) | Wind Speed (m/s) | Environment Temperature (°C) |
---|---|---|---|---|---|
Cooling Jojutla Morelos | 849.46 | 19.81 | 30 | 2.85 | 37.08 |
Heating La Rosilla Durango | 0 | 100 | 30 | 1.32 | −6.96 |
Pipe Diameter (m) | Pipe Depth (m) | Horizontal Length (m) | ΔT (°C) Outet—Inlet for Re = 500 | ΔT (°C) Outet—Inlet for Re = 250 | ΔT (°C) Outet—Inlet for Re = 100 |
---|---|---|---|---|---|
Horizontal length evaluation | |||||
0.15 (6 in) | 2 | 5 | −3.03 | −9.24 | −10.69 |
0.15 (6 in) | 2 | 10 | −4.46 | −10.18 | −10.97 |
0.15 (6 in) | 2 | 15 | −4.7 | −10.68 | −10.87 |
0.15 (6 in) | 2 | 25 | −5.77 | −11.04 | −10.71 |
Vertical length evaluation | |||||
0.15 (6 in) | 2 | 5 | −3.03 | −9.24 | −10.69 |
0.15 (6 in) | 3 | 5 | −7.47 | −10.23 | −11.73 |
0.15 (6 in) | 4 | 5 | −7.36 | −10.34 | −11.86 |
Diameter Evaluation | |||||
0.1 (4 in) | 2 | 5 | −4.3 | −10.15 | −11.75 |
0.15 (6 in) | 2 | 5 | −3.03 | −9.24 | −10.69 |
0.2 (8 in) | 2 | 5 | −2.76 | −8.18 | −9.79 |
0.25 (10 in) | 2 | 5 | −2.77 | −6.41 | −9.25 |
Pipe Diameter (m) | Pipe Depth (m) | Horizontal Length (m) | ΔT (°C) Outlet—Intlet for Re = 500 | ΔT (°C) Outlet—Inlet for Re = 250 | ΔT (°C) Outlet—Intlet for Re = 100 |
---|---|---|---|---|---|
Horizontal length evaluation | |||||
0.15 (6 in) | 2 | 5 | 0.41 | 5.32 | 6.55 |
0.15 (6 in) | 2 | 10 | 1.74 | 5.54 | 6.33 |
0.15 (6 in) | 2 | 15 | 1.3 | 5.61 | 5.86 |
0.15 (6 in) | 2 | 25 | 1.79 | 5.46 | 3.97 |
Vertical length evaluation | |||||
0.15 (6 in) | 2 | 5 | 0.41 | 5.32 | 6.55 |
0.15 (6 in) | 3 | 5 | 5.04 | 6.63 | 8.29 |
0.15 (6 in) | 4 | 5 | 6.19 | 8.1 | 10.11 |
Diameter Evaluation | |||||
0.1 (4 in) | 2 | 5 | 1.55 | 6.1 | 7.34 |
0.15 (6 in) | 2 | 5 | 0.41 | 5.32 | 6.55 |
0.2 (8 in) | 2 | 5 | −0.19 * | 4.75 | 6.06 |
0.25 (10 in) | 2 | 5 | −0.3 * | 4.32 | 5.23 |
Pipe Diameter (m) | Pipe Depth (m) | Horizontal Length (m) | ΔT (°C) Outlet—Intlet for Re = 500 | ΔT (°C) Outlet—Intlet for Re = 250 | ΔT (°C) Outlet—Intlet for Re = 100 |
---|---|---|---|---|---|
Cooling | |||||
0.15 (6 in) | 3 | 15 | −8.95 | −11.72 | −11.74 |
0.15 (6 in) | 4 | 15 | −9.82 | −12.58 | −11.78 |
Heating | |||||
0.15 (6 in) | 3 | 15 | 5.32 | 7.68 | 6.86 |
0.15 (6 in) | 4 | 15 | 6.71 | 9.61 | 8.65 |
Air Relative Humidity (%) | Humidity of Soil (%) | Wind Speed (m/s) | ΔT (°C) Outlet—Intlet for Re = 500 | ΔT (°C) Outlet—Intlet for Re = 250 | ΔT (°C) Outlet—Intlet for Re = 100 |
---|---|---|---|---|---|
Air relative humidity evaluation | |||||
0 | 32 | 2.85 | −4.59 | −10.73 | −12.69 |
19.81 | 32 | 2.85 | −3.03 | −9.24 | −10.69 |
40 | 32 | 2.85 | −1.6 | −7.01 | −8.66 |
60 | 32 | 2.85 | −0.11 | −4.73 | −5.59 |
80 | 32 | 2.85 | 1.39 * | −2.43 | −2.33 |
100 | 32 | 2.85 | 2.88 * | −0.11 | 1.03 * |
Humidity of soil evaluation | |||||
19.81 | 0 | 2.85 | −1.58 | −6.84 | −9.84 |
19.81 | 10 | 2.85 | −1.95 | −7.81 | −10.64 |
19.81 | 20 | 2.85 | −1.51 | −8.63 | −10.86 |
19.81 | 32 | 2.85 | −3.03 | −9.24 | −10.69 |
19.81 | 40 | 2.85 | −3.31 | −9.51 | −10.71 |
19.81 | 50 | 2.85 | −3.38 | −9.44 | −10.53 |
Wind speed evaluation | |||||
19.81 | 32 | 0.5 | 4.48 * | 2.41 * | 4.8 * |
19.81 | 32 | 1 | 1.11 * | −2.86 | −2.95 |
19.81 | 32 | 2 | −1.89 | −7.44 | −9.15 |
19.81 | 32 | 2.85 | −3.03 | −9.24 | −10.69 |
19.81 | 32 | 4 | −4.06 | −10.29 | −12.02 |
Air Relative Humidity (%) | Humidity of Soil (%) | Wind Speed (m/s) | ΔT (°C) Outlet—Intlet for Re = 500 | ΔT (°C) Outlet—Intlet for Re = 250 | ΔT (°C) Outlet—Intlet for Re = 100 |
---|---|---|---|---|---|
Air relative humidity evaluation | |||||
0 | 30 | 1.32 | 0.71 | 5.61 | 6.97 |
20 | 30 | 1.32 | 0.67 | 5.55 | 6.88 |
40 | 30 | 1.32 | 0.64 | 5.49 | 6.8 |
60 | 30 | 1.32 | 0.6 | 5.44 | 6.72 |
80 | 30 | 1.32 | 0.56 | 5.38 | 6.63 |
100 | 30 | 1.32 | 0.41 | 5.32 | 6.55 |
Humidity of soil evaluation | |||||
100 | 0 | 1.32 | 0.19 | 4.96 | 6.78 |
100 | 10 | 1.32 | 0.45 | 5.59 | 7.6 |
100 | 20 | 1.32 | 0.26 | 4.9 | 6.28 |
100 | 30 | 1.32 | 0.41 | 5.32 | 6.55 |
100 | 40 | 1.32 | 0.76 | 5.66 | 6.78 |
100 | 50 | 1.32 | 0.65 | 5.42 | 6.38 |
Wind speed evaluation | |||||
100 | 30 | 0.5 | 0.05 | 4.59 | 5.5 |
100 | 30 | 1.32 | 0.41 | 5.32 | 6.55 |
100 | 30 | 2 | 0.7 | 5.59 | 6.93 |
100 | 30 | 3 | 0.84 | 5.8 | 7.24 |
100 | 30 | 4 | 0.92 | 5.93 | 7.41 |
Pipe Depth (m) | Insulated Length (m) | ΔT (°C) Outlet—Intlet for Re = 500 | ΔT (°C) Outlet—Intlet for Re = 290 | ΔT (°C) Outlet—Intlet for Re = 220 | ΔT (°C) Outlet—Intlet for Re = 150 |
---|---|---|---|---|---|
4 | 4 | −7.36 | −8.73 | −10.4 | −11.62 |
4 | 3.5 | −7.42 | −8.78 | −10.45 | −11.65 |
4 | 3 | −7.46 | −8.82 | −10.49 | −11.68 |
4 | 2.5 | −7.49 | −8.85 | −10.53 | −11.69 |
4 | 2 | −7.53 | −8.89 | −10.56 | −11.71 |
4 | 1.5 | −7.57 | −8.92 | −10.59 | −11.7 |
Pipe Depth (m) | Insulated Length (m) | ΔT (°C) Outlet—Intlet for Re = 500 | ΔT (°C) Outlet—Intlet for Re = 290 | ΔT (°C) Outlet—Intlet for Re = 220 | ΔT (°C) Outlet—Intlet for Re = 150 |
---|---|---|---|---|---|
4 | 4 | 6.19 | 7.69 | 8.5 | 9.57 |
4 | 3.5 | 6.2 | 7.69 | 8.52 | 9.61 |
4 | 3 | 6.23 | 7.71 | 8.54 | 9.64 |
4 | 2.5 | 6.25 | 7.72 | 8.56 | 9.67 |
4 | 2 | 6.28 | 7.74 | 8.59 | 9.69 |
4 | 1.5 | 6.3 | 7.75 | 8.6 | 9.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Arizmendi, A.; Rodríguez-Vázquez, M.; Jiménez-Xamán, C.M.; Romero, R.J.; Montiel-González, M. Parametric Study of the Ground-Air Heat Exchanger (GAHE): Effect of Burial Depth and Insulation Length. Fluids 2023, 8, 40. https://doi.org/10.3390/fluids8020040
Aranda-Arizmendi A, Rodríguez-Vázquez M, Jiménez-Xamán CM, Romero RJ, Montiel-González M. Parametric Study of the Ground-Air Heat Exchanger (GAHE): Effect of Burial Depth and Insulation Length. Fluids. 2023; 8(2):40. https://doi.org/10.3390/fluids8020040
Chicago/Turabian StyleAranda-Arizmendi, Alfredo, Martín Rodríguez-Vázquez, Carlos Miguel Jiménez-Xamán, Rosenberg J. Romero, and Moisés Montiel-González. 2023. "Parametric Study of the Ground-Air Heat Exchanger (GAHE): Effect of Burial Depth and Insulation Length" Fluids 8, no. 2: 40. https://doi.org/10.3390/fluids8020040
APA StyleAranda-Arizmendi, A., Rodríguez-Vázquez, M., Jiménez-Xamán, C. M., Romero, R. J., & Montiel-González, M. (2023). Parametric Study of the Ground-Air Heat Exchanger (GAHE): Effect of Burial Depth and Insulation Length. Fluids, 8(2), 40. https://doi.org/10.3390/fluids8020040