Combination of Riprap and Submerged Vane as an Abutment Scour Countermeasure
Abstract
:1. Introduction
2. Materials and Methods
Laboratory Experiments
3. Results and Discussion
3.1. Application of Submerged Vanes and Riprap Individually
3.2. Combination of Submerged Vanes and Riprap
3.3. Geometry and Scale Ratios of Riprap Apron
3.4. Shear Failure Prevention at Spill-Through Abutment
4. Conclusions
- Installing a riprap layer reduces the maximum scour depth by up to 39% and 34% in vertical wall and spill-through abutments, respectively.
- Submerged vanes reduce the maximum scour depth by up to 34% and 30% in vertical walls and spill-through abutments, respectively. This shows that the effect of riprap on scour reduction is more than that of submerged vanes.
- The largest decrease in scour depth is achieved through a combination of riprap and submerged vanes. These reductions were 54% and 39% in vertical walls and spill-through abutments, respectively.
- By installing a riprap layer, the location of the maximum scour depth is relocated away from the abutment toe while it remains close to it by using submerged vanes alone.
- Applications of submerged vanes enhance riprap stability and reduce edge failure. With vanes, fewer riprap stones are eroded by the flow.
- A square-shaped riprap layer at the downstream end of spill-through abutments is more effective in promoting riprap stone stability and reducing-edge failure than circular-shaped riprap layers.
- Using submerged vanes is not an effective way to prevent riprap shear failure at the downstream side of spill-through abutments. Utilizing a larger riprap layer () is needed.
- By decreasing the thickness of the riprap layer proposed by Cardoso et al. (2010) in the upstream half of the apron, the volume of the riprap layer needed is reduced up to 46% without affecting the riprap efficacy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Upstream apron width | |
Channel width | |
Downstream apron width | |
Median diameter of riprap apron | |
Scour depth | |
Distance of first vane relative to the edge of the abutment | |
Median size of sediment bed | |
Lateral spacing of the vanes | |
Vane height | |
K | Abutment shape factor |
Length of abutment | |
Top length of spill-through abutment | |
Vane length | |
Number of vanes in a row | |
Number of rows of vane | |
Distance of vanes from the abutment | |
Flow rate | |
Riprap | |
Riprap with diameter of 15 mm | |
Submerged vane | |
Thickness of riprap layer | |
Critical shear velocity | |
Mean velocity | |
Critical velocity | |
Width of the apron | |
Position of maximum scour depth along the flow direction | |
Position of maximum scour depth transverse to the flow direction | |
Flow depth | |
Vane angle (degree) corresponding to flow direction | |
Sediment gradation |
References
- Melville, B.W.; Coleman, S.E. Bridge Scour; Water Resources: Highland Ranch, CO, USA, 2000. [Google Scholar]
- Hong, J.H.; Chiew, Y.M.; Lum, J.Y.; Lai, J.S.; Lin, Y.B. Houfeng Bridge Failure in Taiwan. J. Hydraul. Eng. 2012, 138, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Proske, D. Bridge Collapse Frequencies versus Failure Probabilities; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Pizarro, A.; Manfreda, S.; Tubaldi, E. The science behind scour at bridge foundations: A review. Water 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Melville, B.W. Pier and abutment scour: Integrated approach. J. Hydraul. Eng. 1997, 123, 125–136. [Google Scholar] [CrossRef]
- Ettema, R.; Constantinescu, G.; Melville, B.W. Flow-field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch. J. Hydraul. Eng. 2017, 143, 03117006. [Google Scholar] [CrossRef]
- Fakhimjoo, M.S.; Ardeshir, A.; Behzadian, K.; Karami, H. Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity. Water Sci. Eng. 2022; in press. [Google Scholar] [CrossRef]
- Odgaard, A.J.; Wang, Y. Sediment management with submerged vanes. I: Theory. J. Hydraul. Eng. 1991, 117, 267–283. [Google Scholar] [CrossRef]
- Chiew, Y.M. Mechanics of riprap failure at bridge piers. J. Hydraul. Eng. 1995, 121, 635–643. [Google Scholar] [CrossRef]
- Melville, B.W.; Hadfield, A.C. Use of sacrificial piles as pier scour countermeasures. J. Hydraul. Eng. 1999, 125, 1221–1224. [Google Scholar] [CrossRef]
- Morales, R.; Ettema, R.; Barkdoll, B. Large-Scale Flume Tests of Riprap-Apron Performance at a Bridge Abutment on a Floodplain. J. Hydraul. Eng. 2008, 134, 800–809. [Google Scholar] [CrossRef]
- Valela, C.; Nistor, I.; Rennie, C.D.; Lara, J.L.; Maza, M. Hybrid Modeling for Design of a Novel Bridge Pier Collar for Reducing Scour. J. Hydraul. Eng. 2021, 147, 04021012. [Google Scholar] [CrossRef]
- Simarro, G.; Civeira, S.; Cardoso, A.H. Influence of riprap apron shape on spill-through abutments. J. Hydraul. Res. 2012, 50, 138–141. [Google Scholar] [CrossRef]
- Ghorbani, B.; Kells, J.A. Effect of submerged vanes on the scour occurring at a cylindrical pier. J. Hydraul. Res. 2008, 46, 610–619. [Google Scholar] [CrossRef]
- Johnson, P.A.; Hey, R.D.; Tessier, M.; Rosgen, D.L. Use of vanes for control of scour at vertical wall abutment. J. Hydraul. Engrg. 2001, 127, 772–778. [Google Scholar] [CrossRef]
- Zolghadr, M.; Shafai Bejestan, M. Six-legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. Int. J. River Basin Manag. 2021, 19, 319–325. [Google Scholar] [CrossRef]
- Osroush, M.; Hosseini, A.; Kamanbedast, A.A.; Khosrojerdi, A. The effects of height and vertical position of slot on the reduction of scour hole depth around bridge abutments. Ain Shams Eng. J. 2019, 10, 651–659. [Google Scholar] [CrossRef]
- Chiew, Y.M.; Lim, F.H. Failure behavior of riprap layer at bridge piers under live-bed conditions. J. Hydraul. Engrg. 2000, 126, 43–55. [Google Scholar] [CrossRef]
- Lauchlan, C.S.; Melville, B.M. Riprap protection at bridge piers. J. Hydraul. Eng. 2001, 127, 412–418. [Google Scholar] [CrossRef]
- Melville, B.W.; Ballegooy, S.; Coleman, S.; Barkdoll, B.D. Countermeasure toe protection at spill-through abutments. J. Hydraul. Eng. 2006, 132, 235–245. [Google Scholar] [CrossRef]
- Cardoso, A.H.; Simarro, G.; Fael, C.; Le Doucen, O.; Schleiss, A. Toe protection for spill-through and vertical abutments. J. Haul. Res. 2010, 48, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Ji, U.; Yeo, W.; Kang, J. Subsidence of riprap protection without filters for different installation types of riprap around a pier in sands. J. Hydro Environ. Res. 2013, 7, 41–49. [Google Scholar] [CrossRef]
- Valela, C.; Whittaker, C.N.; Rennie, C.D.; Nistor, I.; Melville, B.W. Novel Riprap Structure for Improved Bridge Pier Scour Protection. J. Hydraul. Eng. 2022, 148, 04022002. [Google Scholar] [CrossRef]
- Cope, E.D. Environmentally Friendly and Sustainable Stream Stability in the Vicinity of Bridges. Master Thesis, Brigham Young University, Provo, UT, USA, 2022. [Google Scholar]
- Bhuiyan, F.; Hey, R.D.; Wormleaton, P.R. Hydraulic evaluation of W-weir for river restoration. J. Hydraul. Eng. 2007, 133, 596–609. [Google Scholar] [CrossRef]
- Pagliara, S.; Kurdistani, S.M.; Cammarata, L. Scour of clear water rock W-weirs in straight rivers. J. Hydraul. Eng. 2014, 140, 06014002. [Google Scholar] [CrossRef]
- Chiew, Y.M. Local Scour and Riprap Stability at Bridge Piers in a Degrading Channel. J. Hydraul. Eng. 2004, 130, 218–226. [Google Scholar] [CrossRef]
- Rodríguez-Amaya, C.; Durán-Ariza, A.; Duarte-Méndez, S. Submerged Vane Technology in Colombia: Five Representative Projects. Water 2020, 12, 984. [Google Scholar] [CrossRef] [Green Version]
- Baltazar, J.; Alves, E.; Bombar, G.; Cardoso, A.H. Effect of a Submerged Vane-Field on the Flow Pattern of a Movable Bed Channel with a 90° Lateral Diversion. Water 2021, 13, 828. [Google Scholar] [CrossRef]
- Bahrami Yarahmadi, M.; Shafai Bejestan, M.; Pagliara, S. An experimental study on the secondary flows and bed shear stress at a 90-degree mild bend with and without triangular vanes. J. Hydro Environ. Res. 2020, 33, 1–9. [Google Scholar] [CrossRef]
- Bahrami Yarahmadi, M.; Shafai Bejestan, M. Sediment management and flow patterns at river bend due to triangular vanes attached to the bank. J. Hydro Environ. Res. 2015, 10, 64–75. [Google Scholar] [CrossRef]
- Odgaard, A.J.; Wang, Y. Scour prevention at bridge piers. In Hydraulic Engineering: Proceedings on the 1987 National Conference on Hydraulic Engineering; ASCE: Williamsburg, VA, USA, 1987; pp. 523–527. [Google Scholar]
- Lauchlan, C.S. Countermeasures for pier scour. Ph.D. Dissertation, University of Auckland, Auckland, New Zealand, 1999. [Google Scholar]
- Shafaei Bejestan, M.; Khademi, K.; Kozeymehnezhad, H. Submerged vane-attached to the abutment as scour countermeasure. J. Ain Shams. Eng. 2015, 6, 775–783. [Google Scholar] [CrossRef] [Green Version]
- Zarrati, A.R.; Nazariha, M.; Mashahir, M.B. Reduction of local scour in the vicinity of bridge pier groups using collars and riprap. J. Hydraul. Eng. 2006, 132, 154–162. [Google Scholar] [CrossRef]
- Garg, S.V.; Setia, B.; Verma, D.V.S. Combination of scour protection devices around oblong bridge pier. J. Hydraul. Eng. 2008, 14, 56–68. [Google Scholar] [CrossRef]
- Biswas, P.; Barbhuiya, A.K. Countermeasure of river bend scour using a combination of submerged vanes and riprap. Int. J. Sediment Res. 2018, 33, 478–492. [Google Scholar] [CrossRef]
- Zolghadr, M.; Shafai Bejestan., M.; Fathi, A.; Hoseinreza, A. Protecting Vertical-Wall Bridge Abutment Using Six-Pillar Concrete Elements. Arab. J. Geosci. 2022, 15, 1226. [Google Scholar] [CrossRef]
- Guan, D.; Liu, J.; Chiew, Y.M.; Zhou, Y. Scour Evolution Downstream of Submerged Weirs in Clear Water Scour Conditions. Water 2019, 11, 1746. [Google Scholar] [CrossRef] [Green Version]
- Raudkivi, J.A. Functional Trends of Scour at Bridge Piers. J. Hydraul. Eng. 1986, 112, 1–13. [Google Scholar] [CrossRef]
- Melville, B. W: Local scour at bridge abutment. J. Hydraulic. Eng. 1992, 118, 615. [Google Scholar] [CrossRef]
- Raudkivi, J.A. Loose Boundary Hydraulics; Balkema, A.A., Ed.; CRC Press: Rotterdam, The Netherlands, 1998. [Google Scholar]
- Richardson, E.V.; Davis, S.R. Evaluating scour at bridges. In Hydraulic Engineering Circular 18, HEC-18 Report FHWA-IP-90-017: 204; Federal Highway Administration: Washington, DC, USA, 1995. [Google Scholar]
- Fathi, A.; Zomorodian, S.M.A. Effect of Submerged Vanes on Scour around a Bridge Abutment. KSCE J. Civ. Eng. 2018, 22, 2281–2289. [Google Scholar] [CrossRef]
- van Zwol, J.A. Design Aspect of Submerged Vanes. Master Thesis, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands, 2004. [Google Scholar]
- Chiew, Y.M.; Melville, B.W. Local Scour around Bridge Piers. J. Hydraul. Res. 1987, 25, 15–26. [Google Scholar] [CrossRef]
- Melville, B.W.; Chiew, Y.M. Time Scale for Local Scour at Bridge Piers. J. Hydraul. Eng. 1999, 125, 59–65. [Google Scholar] [CrossRef]
- Liang, B.; Du, S.; Pan, X.; Zhang, L. Local scour for vertical piles in steady currents: Review of mechanisms, influencing factors and empirical equations. J. Mar. Sci. Eng. 2019, 8, 4. [Google Scholar] [CrossRef]
- Cheng, N.S.; Chiew, Y.M.; Chen, X.W. Scaling analysis of pier-scouring processes. J. Eng. Mech. 2016, 142, 06016005. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Garde, R.C.J.; Ranga Ranju, K.G. Temporal variation of local scour around circular bridge pier. J. Hydraul. Eng. 1992, 118, 1091–1106. [Google Scholar] [CrossRef]
- Sheppard, D.M.; Demir, H.; Melville, B.W. Scour at Wide Piers and Long Skewed Piers; Transportation Research Board: Washington, DC, USA, 2011; Volume 682. [Google Scholar] [CrossRef]
- Bozkus, Z.; Osman, Y. Effect of inclination of bridge piers on scouring depth. J. Hydraul. Eng. 2004, 130, 827–832. [Google Scholar] [CrossRef]
- Afzalimehr, H.; Moradian, M.; Singh, V.P. Flow Field around Semielliptical Abutments. J. Hydrol. Eng. 2018, 23, 04017057. [Google Scholar] [CrossRef]
- Barbhuiya, A.K.; Dey, S. Vortex flow field in a scour hole around abutment. Int. J. Sed. Res. 2003, 18, 310–325. [Google Scholar] [CrossRef]
- Cardoso, A.H.; Fael, C.M.S. Protecting vertical-wall abutments with riprap-mattresses. J. Hydraul. Eng. 2009, 135, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Chiew, Y.M.; Lai, J.S.; Link, O. Experimental, Numerical and Field Approaches to Scour Research. Water 2020, 12, 1749. [Google Scholar] [CrossRef]
- Molinas, A.; Kheireldin, K.; Wu, B. Shear stress around vertical wall abutments. J. Hydraul. Eng. 1998, 124, 822–830. [Google Scholar] [CrossRef]
Type of Abutment | Riprap | |||||
---|---|---|---|---|---|---|
Formula | Value | |||||
Vertical wall | 15 | 15 | 2 | 2 | 11 | |
25 | 25 | 2 | 2 | 26 | ||
35 | 30 | 2 | 2 | 33 | ||
Spill-through | 35 | 20 | 2 | 2 | 28 |
Parameter | Value | |
---|---|---|
) | ||
) | ||
Angle of vanes relative to flow direction () | 30° | 30° |
Distance of vanes from the abutment () | ||
Number of vanes in a row () | 1 | 2 |
Number of rows of vane () | ||
Lateral spacing of the vanes () |
Tests Number | Abutment Type | Scour Countermeasures | ds/L | Scour Reduction Compared to Baseline Tests (%) | ||||
---|---|---|---|---|---|---|---|---|
T1 | _ | _ | _ | 0.045 | 15.2 | 0.608 | _ | |
T2 | _ | _ | 0.045 | 10 | 0.4 | 34.21 | ||
T3 | 65 | 24 | 0.045 | 9.4 | 0.376 | 38.75 | ||
T4 | SR | 50 | 30 | 0.045 | 8.9 | 0.356 | 41.45 | |
T5 | _ | _ | 0.045 | 11.8 | 0.337 | _ | ||
T6 | _ | _ | 0.045 | 8.2 | 0.234 | 30.5 | ||
T7 | SR | 95 | 26 | 0.045 | 7.5 | 0.214 | 36.44 | |
T8 | 80 | 22 | 0.045 | 7.8 | 0.223 | 33.89 | ||
T9 | 98 | 29 | 0.045 | 7.2 | 0.206 | 38.98 | ||
T10 | _ | _ | 0.045 | 17.8 | 0.508 | _ | ||
T11 | _ | _ | 0.045 | 16.1 | 0.460 | 9.55 | ||
T12 | R | 60 | 40 | 0.045 | 13.2 | 0.377 | 25.84 | |
T13 | SR | 62 | 35 | 0.045 | 12.1 | 0.346 | 32.02 | |
T14 | _ | _ | 0.045 | 10.1 | 0.673 | _ | ||
T15 | _ | _ | 0.045 | 8.7 | 0.580 | 13.86 | ||
T16 | 36 | 24 | 0.045 | 8.3 | 0.553 | 17.82 | ||
T17 | SR | 22 | 21 | 0.045 | 5.5 | 0.360 | 54.45 |
Tests Number | Shape of Apron | Changes in Scour Depth (%) | Riprap Volume Reduction (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T18 | 28 | 0.8 | 20 | 2 | 73 | 25 | Geometry I | 0.268 | _ | 7393 | _ |
T19 | 25 | 0.714 | 20 | 2 | 70 | 27 | Geometry I | 0.277 | +3 | 6353 | 14 |
T20 | 25 | 0.714 | 20 | 2 | 80 | 25 | Geometry II | 0.234 | −12.7 | 7228 | 2.2 |
T21 | 20 | 0.571 | 20 | 2 | 60 | 23 | Geometry II | 0.240 | −10.6 | 5439 | 26.4 |
T22 | 25 | 0.714 | 20 | 2 | 74 | 30 | Geometry II | 0.234 | −12.7 | 5006 | 32.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathi, A.; Zomorodian, S.M.A.; Zolghadr, M.; Chadee, A.; Chiew, Y.-M.; Kumar, B.; Martin, H. Combination of Riprap and Submerged Vane as an Abutment Scour Countermeasure. Fluids 2023, 8, 41. https://doi.org/10.3390/fluids8020041
Fathi A, Zomorodian SMA, Zolghadr M, Chadee A, Chiew Y-M, Kumar B, Martin H. Combination of Riprap and Submerged Vane as an Abutment Scour Countermeasure. Fluids. 2023; 8(2):41. https://doi.org/10.3390/fluids8020041
Chicago/Turabian StyleFathi, Abazar, S. M. Ali Zomorodian, Masih Zolghadr, Aaron Chadee, Yee-Meng Chiew, Bimlesh Kumar, and Hector Martin. 2023. "Combination of Riprap and Submerged Vane as an Abutment Scour Countermeasure" Fluids 8, no. 2: 41. https://doi.org/10.3390/fluids8020041
APA StyleFathi, A., Zomorodian, S. M. A., Zolghadr, M., Chadee, A., Chiew, Y. -M., Kumar, B., & Martin, H. (2023). Combination of Riprap and Submerged Vane as an Abutment Scour Countermeasure. Fluids, 8(2), 41. https://doi.org/10.3390/fluids8020041