Experimental Study on the Optimum Installation Depth and Dimensions of Roughening Elements on Abutment as Scour Countermeasures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Installing Elements between the Bed and Water Surface (Step 1 in Assessment Experiments)
5. Determining the Optimum Installation Depth of the Elements
6. Determining Optimum Thickness and Protrusion of the Elements
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notations
B = channel (flume) width |
b = Abutment width |
= Median diameter of sediment |
Fr = Froud number |
g = gravitational acceleration, |
L = abutment length (m) (perpendicular to the flow), |
P = Elements’ protrusion |
Re = Reynold number |
S = roughening element’s spacing t = Elements thickness |
t = roughening element’s thickness |
T = time |
U = Flow velocity |
= Critical velocity |
= Critical shear velocity |
y = Flow depth |
Z = Installation depth of elements |
= Geometric standard deviation |
ρs = the sediment density, |
ρ = water density |
µ = water dynamic viscosity |
References
- Richardson, E.V.; Harrison, L.J.; Richardson, J.R.; Davies, S.R. Evaluating Scour at Bridges; US Department of Transportation, Federal Highway Administration: Washington, DC, USA, 1993.
- Melville, B.W. Local scour at bridge abutments. J. Hydraul. Eng. 1992, 118, 615–631. [Google Scholar] [CrossRef]
- Afzalimehr, H.; Moradian, M.; Singh, V.P. Flow Field around Semielliptical Abutments. J. Hydrol. Eng. 2018, 23, 04017057. [Google Scholar] [CrossRef]
- Barbhuiya, A.K.; Dey, S. Vortex flow field in a scour hole around abutment. Int. J. Sed. Res. 2003, 18, 310–325. [Google Scholar] [CrossRef]
- Molinas, A.; Kheireldin, K.; Wu, B. Shear Stress around Vertical Wall Abutments. J. Hydraul. Eng. 1998, 124, 822–830. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Pandey, K.K. Numerical investigation of flow field around T-shaped spur dyke in a reverse-meandering channel. Water Supply 2022, 22, 574–588. [Google Scholar] [CrossRef]
- Lai, Y.G.; Liu, X.; Bombardelli, F.A.; Song, Y. Three-Dimensional Numerical Modeling of Local Scour: A State-of-the-Art Review and Perspective. J. Hydraul. Eng. 2022, 148, 03122002. [Google Scholar] [CrossRef]
- Pandey, M.; Oliveto, G.; Pu, J.H.; Sharma, P.K.; Ojha, C.S.P. Pier Scour Prediction in Non-Uniform Gravel Beds. Water 2020, 12, 1696. [Google Scholar] [CrossRef]
- Gazi, A.H.; Afzal, M.S. A new mathematical model to calculate the equilibrium scour depth around a pier. Acta Geophys. 2019, 68, 181–187. [Google Scholar] [CrossRef]
- Melville, B.; Coleman, S. Bridge Scour; Water Resources Publications: Littleton, CO, USA, 2000; 550p. [Google Scholar]
- Melville, B.; Van Ballegooy, S.; Coleman, S.; Barkdoll, B. Scour Countermeasures for Wing-Wall Abutments. J. Hydraul. Eng. 2006, 132, 563–574. [Google Scholar] [CrossRef]
- Korkut, R.; Martinez, E.J.; Morales, R.; Ettema, R.; Barkdoll, B. Geobag Performance as Scour Countermeasure for Bridge Abutments. J. Hydraul. Eng. 2007, 133, 431–439. [Google Scholar] [CrossRef]
- Cardoso, A.H.; Fael, C.M. Protecting Vertical-Wall Abutments with Riprap Mattresses. J. Hydraul. Eng. 2009, 135, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Sui, J.; Afzalimehr, H.; Samani, A.K.; Maherani, M. Clear-water scour around semi-elliptical abutments with armored beds. Int. J. Sediment Res. 2010, 25, 233–245. [Google Scholar] [CrossRef]
- Dargahi, B. Controlling Mechanism of Local Scouring. J. Hydraul. Eng. 1990, 116, 1197–1214. [Google Scholar] [CrossRef]
- Chiew, Y.M. Scour protection at bridge piers. J. Hydraul. Eng. 1992, 118, 1260–1269. [Google Scholar] [CrossRef]
- Kumar, V.; Raju, K.G.R.; Vittal, N. Reduction of Local Scour around Bridge Piers Using Slots and Collars. J. Hydraul. Eng. 1999, 125, 1302–1305. [Google Scholar] [CrossRef]
- Johnson, P.A.; Hey, R.D.; Tessier, M.; Rosgen, D. Use of Vanes for Control of Scour at Vertical Wall Abutments. J. Hydraul. Eng. 2001, 127, 772–778. [Google Scholar] [CrossRef]
- Zarrati, A.R.; Gholami, H.; Mashahir, M. Application of collar to control scouring around rectangular bridge piers. J. Hydraul. Res. 2004, 42, 97–103. [Google Scholar] [CrossRef]
- Li, H.; Barkdoll, B.D.; Kuhnle, R.; Alonso, C. Parallel Walls as an Abutment Scour Countermeasure. J. Hydraul. Eng. 2006, 132, 510–520. [Google Scholar] [CrossRef]
- Heidarpour, M.; Afzalimehr, H.; Izadinia, E. Reduction of local scour around bridge pier groups using collars. Int. J. Sediment Res. 2010, 25, 411–422. [Google Scholar] [CrossRef]
- Fathi, A.; Zomorodian, S.M.A. Effect of Submerged Vanes on Scour Around a Bridge Abutment. KSCE J. Civ. Eng. 2018, 22, 2281–2289. [Google Scholar] [CrossRef]
- Valela, C.; Rennie, C.D.; Nistor, I. Improved bridge pier collar for reducing scour. Int. J. Sediment Res. 2021, 37, 37–46. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Pandey, K.K. Scour around spur dike in curved channel: A review. Acta Geophys. 2022, 70, 2469–2485. [Google Scholar] [CrossRef]
- Mashahir, M.B.; Zarrati, A.R.; Mokallaf, E. Application of Riprap and Collar to Prevent Scouring around Rectangular Bridge Piers. J. Hydraul. Eng. 2010, 136, 183–187. [Google Scholar] [CrossRef]
- Zarrati, A.R.; Chamani, M.R.; Shafaie, A.; Latifi, M. Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap. Int. J. Sediment Res. 2010, 25, 313–322. [Google Scholar] [CrossRef]
- Zolghadr, M.; Bejestan, M.S.; Fathi, A.; Hoseinreza, A. Protecting vertical-wall bridge abutment using six-pillar concrete elements. Arab. J. Geosci. 2022, 15, 1226. [Google Scholar] [CrossRef]
- Radice, A.; Davari, V. Roughening Elements as Abutment Scour Countermeasures. J. Hydraul. Eng. 2014, 140, 06014014. [Google Scholar] [CrossRef]
- Dey, S.; Sumer, B.M.; Fredsøe, J. Control of Scour at Vertical Circular Piles under Waves and Current. J. Hydraul. Eng. 2006, 132, 270–279. [Google Scholar] [CrossRef]
- Radice, A.; Lauva, O. On flow-altering countermeasures for scour at vertical-wall abutment. Arch. Hydro Eng. Environ. Mech. 2012, 59, 137–153. [Google Scholar]
- Oliveto, G.; Hager, W.H. Temporal evolution of clear-water pier and abutment scour. ASCE J. Hydraulic. Eng. 2002, 128, 811–820. [Google Scholar] [CrossRef]
- Breusers, H.N.C.; Raudkivi, A.J. Scouring. Hydraulic Structures Design Manual2; IAHR: Rotterdam, The Netherlands, 1991. [Google Scholar]
- Raudkivi, A.J.; Ettema, R. Clear-water scour at cylindrical piers. J. Hydraul. Eng. 1983, 109, 338–350. [Google Scholar] [CrossRef]
- Haghnazar, H.; Sangsefidi, Y.; Mehraein, M.; Tavakol-Davani, H. Evaluation of infilling and replenishment of river sand mining pits. Environ. Earth Sci. 2020, 79, 362. [Google Scholar] [CrossRef]
- Ballio, F.; Teruzzi, A.; Radice, A. Constriction Effects in Clear-Water Scour at Abutments. J. Hydraul. Eng. 2009, 135, 140–145. [Google Scholar] [CrossRef]
- Melville, B.W.; Sutherland, A.J. Design Method for Local Scour at Bridge Piers. J. Hydraul. Eng. 1988, 114, 1210–1226. [Google Scholar] [CrossRef]
- Raudkivi, A.J. Loose Boundary Hydraulics, 3rd ed.; Technical Report; Pergamon Press: Oxford, UK, 1990. [Google Scholar]
- Bozkus, Z.; Yildiz, O. Effects of Inclination of Bridge Piers on Scouring Depth. J. Hydraul. Eng. 2004, 130, 827–832. [Google Scholar] [CrossRef]
- Vittal, N.; Kothyari, U.C.; Haghighat, M. Clear-water scour around bridge pier group. J. Hydraul. Eng. 1994, 120, 1309–1318. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Ghani, A.A.; Azamathulla, H.M. Estimation of dimension and time variation of local scour at short abutment. Int. J. River Basin Manag. 2013, 11, 121–135. [Google Scholar] [CrossRef]
- Zolghadr, M.; Bejestan, M.S.; Rezaeianzadeh, M. Investigating the Effect of Six-Legged Element Placement Density on Local Scour at Wing-Wall Bridge Abutments. In Proceedings of the World Environmental and Water Resources Congress, West Palm Beach, FL, USA, 22–26 May 2016. [Google Scholar] [CrossRef]
- Zolghadr, M.; Bejestan, M.S. Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. Int. J. River Basin Manag. 2020, 19, 319–325. [Google Scholar] [CrossRef]
- Coleman, S.E.; Lauchlan, C.S.; Melville, B. Clear-water scour development at bridge abutments. J. Hydraul. Res. 2003, 41, 521–531. [Google Scholar] [CrossRef]
- Cheng, N.S.; Chiew, Y.M.; Chen, X. Scaling Analysis of Pier-Scouring Processes. J. Eng. Mech. ASCE 2016, 142, 06016005. [Google Scholar] [CrossRef]
- Lanca, R.; Fael, C.; Cardoso, A. Assessing equilibrium clear water scour around single cylindrical piers. River Flow 2010, 2010, 1207–1213. [Google Scholar]
- Khazimenejad, H.; Ghomeishi, M.; Shafai Bajestan, M. Comparison of Symmetrical and Unsymmetrical Rectangular Collars on Reduction of Local Scour at Bridge Abutment. J. Irrig. Sci. Eng. 2014, 37, 1–12. [Google Scholar]
- Mahdi, M.; Mehdi, F.; Venkat, A. Using data mining methods to improve discharge coefficient prediction in Piano Key and Labyrinth weirs. Water Supply 2021, 22, 1964–1982. [Google Scholar] [CrossRef]
- Xiong, X.; Melville, B.W.; Feriedrich, H. Effect of contraction length on abutment scour. In Proceedings of the International IAHR World Congress, Athens, Greece, 5–7 September 2013. [Google Scholar]
Test Conditions | Baseline Experiments | Assessment Experiments | Total Experiments | ||||
---|---|---|---|---|---|---|---|
Elements under Bed Level | Elements above and under Bed Level | Optimum Thickness and Protrusion | Different Hydraulic Conditions | ||||
Number of Tests | b = 7 cm | 1 | 7 | 7 | 4 | 16 | 35 |
b = 14 cm | 1 | 4 | 4 | 4 | 16 | 29 |
Test Number | Number of Elements under the Bed | Number of Elements above the Bed | Abutment Width | t = P | U/UC | ds/y | Scour Depth Reduction % | Z (cm) | Z/L |
---|---|---|---|---|---|---|---|---|---|
T1 | 0 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.77 | 7.2 | 0 | 0 |
T2 | 1 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.76 | 8.8 | 2.1 | 0.15 |
T3 | 2 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.75 | 9.6 | 4.2 | 0.3 |
T4 | 3 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.74 | 11.2 | 6.3 | 0.45 |
T5 | 4 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.69 | 17.6 | 8.4 | 0.6 |
T6 | 5 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.69 | 17.6 | 10.5 | 0.75 |
T7 | 6 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.69 | 17.6 | 12.6 | 0.9 |
T8 | 4 | 2 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.7 | 16 | 8.4 | 0.6 |
T9 | 4 | 3 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.7 | 16 | 8.4 | 0.6 |
T10 | 4 | 4 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.69 | 17.6 | 8.4 | 0.6 |
T11 | 4 | 5 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.73 | 12 | 8.4 | 0.6 |
T12 | 4 | 6 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.71 | 14.4 | 8.4 | 0.6 |
T13 | 4 | 7 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.72 | 13.6 | 8.4 | 0.6 |
T14 | 4 | 8 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.7 | 15.2 | 8.4 | 0.6 |
T15 | 4 | 1 | b/L = 0.5 | 0.05 L (0.7 cm) | 0.94 | 0.69 | 17.6 | 8.4 | 0.6 |
T16 | 2 | 1 | b/L = 0.5 | 0.1 L (1.4 cm) | 0.94 | 0.65 | 22.4 | 9.8 | 0.7 |
T17 | 1 | 1 | b/L = 0.5 | 0.2 L (2.8 cm) | 0.94 | 0.58 | 30.4 | 10.5 | 0.75 |
T18 | 1 | 1 | b/L = 0.5 | 0.3 L (4.2 cm) | 0.94 | 0.6 | 28 | 11.2 | 0.8 |
T19 | 4 | 1 | b/L = 1 | 0.05 L (0.7 cm) | 0.94 | 0.73 | 12 | 8.4 | 0.6 |
T20 | 2 | 1 | b/L = 1 | 0.1 L (1.4 cm) | 0.94 | 0.6 | 27.2 | 9.8 | 0.7 |
T21 | 1 | 1 | b/L = 1 | 0.2 L (2.8 cm) | 0.94 | 0.56 | 32.8 | 10.5 | 0.75 |
T22 | 1 | 1 | b/L = 1 | 0.3 L (4.2 cm) | 0.94 | 0.59 | 29.6 | 11.2 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolghadr, M.; Zomorodian, S.M.A.; Fathi, A.; Tripathi, R.P.; Jafari, N.; Mehta, D.; Sihag, P.; Azamathulla, H.M. Experimental Study on the Optimum Installation Depth and Dimensions of Roughening Elements on Abutment as Scour Countermeasures. Fluids 2023, 8, 175. https://doi.org/10.3390/fluids8060175
Zolghadr M, Zomorodian SMA, Fathi A, Tripathi RP, Jafari N, Mehta D, Sihag P, Azamathulla HM. Experimental Study on the Optimum Installation Depth and Dimensions of Roughening Elements on Abutment as Scour Countermeasures. Fluids. 2023; 8(6):175. https://doi.org/10.3390/fluids8060175
Chicago/Turabian StyleZolghadr, Masih, Seyed Mohammad Ali Zomorodian, Abazar Fathi, Ravi Prakash Tripathi, Neda Jafari, Darshan Mehta, Parveen Sihag, and Hazi Mohammad Azamathulla. 2023. "Experimental Study on the Optimum Installation Depth and Dimensions of Roughening Elements on Abutment as Scour Countermeasures" Fluids 8, no. 6: 175. https://doi.org/10.3390/fluids8060175
APA StyleZolghadr, M., Zomorodian, S. M. A., Fathi, A., Tripathi, R. P., Jafari, N., Mehta, D., Sihag, P., & Azamathulla, H. M. (2023). Experimental Study on the Optimum Installation Depth and Dimensions of Roughening Elements on Abutment as Scour Countermeasures. Fluids, 8(6), 175. https://doi.org/10.3390/fluids8060175