Fingering Instability of Binary Droplets on Oil Pool
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Droplet Spreading
3.2. Fingering Instability on Spreading Front
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Gennes, P.G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: New York, NY, USA, 2004. [Google Scholar]
- Troian, S.M.; Wu, X.L.; Safran, S.A. Fingering instability in thin wetting films. Phys. Rev. Lett. 1989, 62, 1496. [Google Scholar] [CrossRef] [PubMed]
- Cazabat, A.M.; Heslot, F.; Troian, S.M.; Carles, P. Fingering instability of thin spreading films driven by temperature gradients. Nature 1990, 346, 824–826. [Google Scholar] [CrossRef]
- Neitzel, G.P.; Dell’Aversana, P. Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid. Mech. 2002, 34, 267–289. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid. Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Venerus, D.C.; Nieto Simavilla, D. Tears of wine: New insights on an old phenomenon. Sci. Rep. 2015, 5, 16162. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, A.; Wasan, D.; Lee, J. Tears of wine: The dance of the droplets. Adv. Colloid Interface Sci. 2018, 256, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lohse, D.; Zhang, X. Physicochemical hydrodynamics of droplets out of equilibrium. Nat. Rev. Phys. 2020, 2, 426–443. [Google Scholar] [CrossRef]
- Wang, Z.; Orejon, D.; Takata, Y.; Sefiane, K. Wetting and evaporation of multicomponent droplets. Phys. Rep. 2022, 960, 1–37. [Google Scholar] [CrossRef]
- Cira, N.J.; Benusiglio, A.; Prakash, M. Vapour-mediated sensing and motility in two-component droplets. Nature 2015, 519, 446–450. [Google Scholar] [CrossRef]
- Sanatkaran, N.; Kulichikhin, V.G.; Malkin, A.Y.; Foudazi, R. Spreading of oil-in-water emulsions on water surface. Langmuir 2018, 34, 10974–10983. [Google Scholar] [CrossRef]
- Wodlei, F.; Sebilleau, J.; Magnaudet, J.; Pimienta, V. Marangoni-driven flower-like patterning of an evaporating drop spreading on a liquid substrate. Nat. Commun. 2018, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Motaghian, M.; Shirsavar, R.; Erfanifam, M.; Sabouhi, M.; Van Der Linden, E.; Stone, H.A.; Bonn, D.; Habibi, M. Rapid spreading of a droplet on a thin soap film. Langmuir 2019, 35, 14855–14860. [Google Scholar] [CrossRef] [PubMed]
- Fanton, X.; Cazabat, A.M. Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 1998, 14, 2554–2561. [Google Scholar] [CrossRef]
- Deodhar, S.; Thampi, S.P.; Basavaraj, M.G. Drops spreading on fluid surfaces: Transition from Laplace to Marangoni regime. Phys. Rev. Fluids 2021, 6, L112001. [Google Scholar] [CrossRef]
- Jia, F.; Wang, T.; Peng, X.; Sun, K. Three stages of Marangoni-driven film spreading for miscible fluids. Phys. Fluids 2022, 34, 121705. [Google Scholar] [CrossRef]
- Motaghian, M.; van der Linden, E.; Habibi, M. Surfactant-surfactant interactions govern unusual Marangoni spreading on a soap film. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129747. [Google Scholar] [CrossRef]
- Baumgartner, D.A.; Shiri, S.; Sinha, S.; Karpitschka, S.; Cira, N.J. Marangoni spreading and contracting three-component droplets on completely wetting surfaces. Proc. Natl. Acad. Sci. USA 2022, 119, e2120432119. [Google Scholar] [CrossRef]
- Liu, D.; Tran, T. Vapor-induced attraction of floating droplets. J. Phys. Chem. Lett. 2018, 9, 4771–4775. [Google Scholar] [CrossRef]
- Mouat, A.P.; Wood, C.E.; Pye, J.E.; Burton, J.C. Tuning contact line dynamics and deposition patterns in volatile liquid mixtures. Phys. Rev. Lett. 2020, 124, 064502. [Google Scholar] [CrossRef]
- Troian, S.M.; Herbolzheimer, E.; Safran, S.A.; Joanny, J.F. Fingering instabilities of driven spreading films. Europhys. Lett. 1989, 10, 25–30. [Google Scholar] [CrossRef]
- Dussaud, A.D.; Troian, S.M. Dynamics of spontaneous spreading with evaporation on a deep fluid layer. Phys. Fluids 1998, 10, 23–38. [Google Scholar] [CrossRef]
- Darhuber, A.A.; Troian, S.M. Marangoni driven structures in thin film flows. Phys. Fluids 2003, 15, S9. [Google Scholar] [CrossRef]
- Dussaud, A.D.; Matar, O.K.; Troian, S.M. Spreading characteristics of an insoluble surfactant film on a thin liquid layer: Comparison between theory and experiment. J. Fluid Mech. 2005, 544, 23–51. [Google Scholar] [CrossRef]
- Keiser, L.; Bense, H.; Colinet, P.; Bico, J.; Reyssat, E. Marangoni bursting: Evaporation-induced emulsification of binary mixtures on a liquid layer. Phys. Rev. Lett. 2017, 118, 074504. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Muller, K.; Shardt, O.; Afkhami, S.; Stone, H.A. Solutal Marangoni flows of miscible liquids drive transport without surface contamination. Nat. Phys. 2017, 13, 1105–1110. [Google Scholar] [CrossRef]
- Pinto, R.L.; Le Roux, S.; Cantat, I.; Saint-Jalmes, A. Enhanced interfacial deformation in a Marangoni flow: A measure of the dynamical surface tension. Phys. Rev. Fluids 2018, 3, 024003. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Kim, H.Y. Dewetting of liquid film via vapour-mediated Marangoni effect. J. Fluid Mech. 2019, 872, 100–114. [Google Scholar] [CrossRef]
- Ma, X.; Zhong, M.; He, Y.; Liu, Z.; Li, Z. Fingering instability in Marangoni spreading on a deep layer of polymer solution. Phys. Fluids 2020, 32, 112112. [Google Scholar] [CrossRef]
- Néel, B.; Villermaux, E. The spontaneous puncture of thick liquid films. J. Fluid Mech. 2018, 838, 192–221. [Google Scholar] [CrossRef]
- Aljedaani, A.B.; Wang, C.; Jetly, A.; Thoroddsen, S.T. Experiments on the breakup of drop-impact crowns by Marangoni holes. J. Fluid Mech. 2018, 844, 162–186. [Google Scholar] [CrossRef]
- Villermaux, E. Fragmentation versus cohesion. J. Fluid Mech. 2020, 898, P1. [Google Scholar] [CrossRef]
- Hasegawa, K.; Manzaki, Y. Marangoni fireworks: Atomization dynamics of binary droplets on an oil pool. Phys. Fluids 2021, 33, 034124. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, H.; Ji, W.; Li, W.; Wang, J.; Yuan, Q.; Wang, Y.; Lan, D. Marangoni-driven instability patterns of an N-hexadecane drop triggered by assistant solvent. Phys. Fluids 2021, 33, 024104. [Google Scholar] [CrossRef]
- Matar, O.K.; Troian, S.M. Linear stability analysis of an insoluble surfactant monolayer spreading on a thin liquid film. Phys. Fluids 1997, 9, 3645–3657. [Google Scholar] [CrossRef]
- Schmitt, M.; Stark, H. Marangoni flow at droplet interfaces: Three-dimensional solution and applications. Phys. Fluids 2016, 28, 012106. [Google Scholar] [CrossRef]
- Pototsky, A.; Thiele, U.; Stark, H. Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer. Eur. Phys. J. E 2016, 39, 51. [Google Scholar] [CrossRef]
- Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Guo, J. Damping of surface waves due to crude oil/oil emulsion films on water. Mar. Pollut. Bull. 2019, 146, 206–214. [Google Scholar] [CrossRef]
- Ermakov, S.A.; Sergievskaya, I.A.; Gushchin, L.A. Damping of gravity-capillary waves in the presence of oil slicks according to data from laboratory and numerical experiments. Izv. Atmos. Ocean. Phys. 2012, 48, 565–572. [Google Scholar] [CrossRef]
- Rajan, G.K. Dissipation of interfacial Marangoni waves and their resonance with capillary-gravity waves. Int. J. Eng. Sci. 2020, 154, 103340. [Google Scholar] [CrossRef]
- Rajan, G.K. Solutions of a comprehensive dispersion relation for waves at the elastic interface of two viscous fluids. Eur. J. Mech. B Fluids 2021, 89, 241–258. [Google Scholar] [CrossRef]
- Stetten, A.Z.; Moraca, G.; Corcoran, T.E.; Tristram-Nagle, S.; Garoff, S.; Przybycien, T.M.; Tilton, R.D. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. J. Colloid Interface Sci. 2016, 484, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Japan Society of Mechanical Engineers (JSME). JSME Data Book: Thermophysical Properties of Fluids; JSME: Tokyo, Japan, 1983. [Google Scholar]
- Rosen, M.J. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mesyats, G.A.; Zubarev, N.M. The Rayleigh–Plateau instability and jet formation during the extrusion of liquid metal from craters in a vacuum arc cathode spot. J. Appl. Phys. 2015, 117, 043302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasegawa, K.; Kishimoto, Y. Fingering Instability of Binary Droplets on Oil Pool. Fluids 2023, 8, 138. https://doi.org/10.3390/fluids8050138
Hasegawa K, Kishimoto Y. Fingering Instability of Binary Droplets on Oil Pool. Fluids. 2023; 8(5):138. https://doi.org/10.3390/fluids8050138
Chicago/Turabian StyleHasegawa, Koji, and Yuya Kishimoto. 2023. "Fingering Instability of Binary Droplets on Oil Pool" Fluids 8, no. 5: 138. https://doi.org/10.3390/fluids8050138
APA StyleHasegawa, K., & Kishimoto, Y. (2023). Fingering Instability of Binary Droplets on Oil Pool. Fluids, 8(5), 138. https://doi.org/10.3390/fluids8050138