Outlook on Magnetohydrodynamical Turbulence and Its Astrophysical Implications
Abstract
:1. Introduction
2. Basics of MHD Turbulence Theory
2.1. General Considerations
2.2. Alfvén and Slow Modes
2.3. Fast Modes
3. MHD Turbulence and Dynamo
4. Magnetic Reconnection and Turbulence
4.1. Fast Turbulent Reconnection
4.2. Violation of Flux Freezing and Reconnection Diffusion
5. Turbulence in Spiral Galaxies
5.1. Properties of Interstellar Turbulence
5.2. Effects on Star Formation
6. Turbulence and Cosmic Rays
7. Implication of Turbulence: Gradient Technique for Studies of Magnetic Fields
8. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armstrong, J.W.; Rickett, B.J.; Spangler, S.R. Electron density power spectrum in the local interstellar medium. Astrophys. J. 1995, 443, 209–221. [Google Scholar] [CrossRef]
- Chepurnov, A.; Lazarian, A. Extending the Big Power Law in the Sky with Turbulence Spectra from Wisconsin Hα Mapper Data. Astrophys. J. 2010, 710, 853–858. [Google Scholar] [CrossRef]
- Leamon, R.J.; Smith, C.W.; Ness, N.F.; Matthaeus, W.H.; Wong, H.K. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. Space Phys. 1998, 103, 4775. [Google Scholar] [CrossRef]
- Burkhart, B.; Stanimirović, S.; Lazarian, A.; Kowal, G. Characterizing Magnetohydrodynamic Turbulence in the Small Magellanic Cloud. Astrophys. J. 2010, 708, 1204–1220. [Google Scholar] [CrossRef]
- Norman, C.A.; Ferrara, A. The Turbulent Interstellar Medium: Generalizing to a Scale-dependent Phase Continuum. Astrophys. J. 1996, 467, 280. [Google Scholar] [CrossRef]
- Ferrière, K.M. The interstellar environment of our galaxy. Rev. Mod. Phys. 2001, 73, 1031–1066. [Google Scholar] [CrossRef]
- Subramanian, K.; Shukurov, A.; Haugen, N.E.L. Evolving turbulence and magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 2006, 366, 1437–1454. [Google Scholar] [CrossRef]
- Enßlin, T.A.; Vogt, C. Magnetic turbulence in cool cores of galaxy clusters. Astron. Astrophys. 2006, 453, 447–458. [Google Scholar] [CrossRef]
- Chandran, B.D.G. AGN-driven Convection in Galaxy-Cluster Plasmas. Astrophys. J. 2005, 632, 809–820. [Google Scholar] [CrossRef]
- Balbus, S.A.; Hawley, J.F. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 1998, 70, 1–53. [Google Scholar] [CrossRef]
- Jafari, A.; Vishniac, E.T. Magnetic Field Transport in Accretion Disks. Astrophys. J. 2018, 854, 2. [Google Scholar] [CrossRef]
- Galsgaard, K.; Nordlund, Å. Heating and activity of the solar corona. 3. Dynamics of a low beta plasma with three-dimensional null points. J. Geophys. Res. Space Phys. 1997, 102, 231–248. [Google Scholar] [CrossRef]
- Gerrard, C.L.; Hood, A.W. Kink unstable coronal loops: Current sheets, current saturation and magnetic reconnection. Sol. Phys. 2003, 214, 151–169. [Google Scholar] [CrossRef]
- Beresnyak, A.; Lazarian, A. Turbulence in Magnetohydrodynamics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Matthaeus, W.H.; Ghosh, S.; Oughton, S.; Roberts, D.A. Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. Space Phys. 1996, 101, 7619–7630. [Google Scholar] [CrossRef]
- Goldreich, P.; Sridhar, S. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys. J. 1995, 438, 763–775. [Google Scholar] [CrossRef]
- Lithwick, Y.; Goldreich, P. Compressible Magnetohydrodynamic Turbulence in Interstellar Plasmas. Astrophys. J. 2001, 562, 279–296. [Google Scholar] [CrossRef]
- Cho, J.; Lazarian, A. Compressible Sub-Alfvénic MHD Turbulence in Low- β Plasmas. Phys. Rev. Lett. 2002, 88, 245001. [Google Scholar] [CrossRef]
- Cho, J.; Lazarian, A. Compressible magnetohydrodynamic turbulence: Mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 2003, 345, 325–339. [Google Scholar] [CrossRef]
- Hu, Y.; Lazarian, A.; Xu, S. Superdiffusion of cosmic rays in compressible magnetized turbulence. Mon. Not. R. Astron. Soc. 2022, 512, 2111–2124. [Google Scholar] [CrossRef]
- Lazarian, A.; Vishniac, E.T. Reconnection in a Weakly Stochastic Field. Astrophys. J. 1999, 517, 700–718. [Google Scholar] [CrossRef]
- Eyink, G.L.; Lazarian, A.; Vishniac, E.T. Fast Magnetic Reconnection and Spontaneous Stochasticity. Astrophys. J. 2011, 743, 51. [Google Scholar] [CrossRef]
- Cho, J.; Vishniac, E.T. The Anisotropy of Magnetohydrodynamic Alfvénic Turbulence. Astrophys. J. 2000, 539, 273–282. [Google Scholar] [CrossRef]
- Maron, J.; Goldreich, P. Simulations of Incompressible Magnetohydrodynamic Turbulence. Astrophys. J. 2001, 554, 1175–1196. [Google Scholar] [CrossRef]
- Cho, J.; Lazarian, A.; Vishniac, E.T. Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium. Astrophys. J. 2002, 564, 291–301. [Google Scholar] [CrossRef]
- Lazarian, A. Enhancement and Suppression of Heat Transfer by MHD Turbulence. Astrophys. J. 2006, 645, L25–L28. [Google Scholar] [CrossRef]
- Galtier, S.; Nazarenko, S.V.; Newell, A.C.; Pouquet, A. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 2000, 63, 447–488. [Google Scholar] [CrossRef]
- Kowal, G.; Lazarian, A. Velocity Field of Compressible Magnetohydrodynamic Turbulence: Wavelet Decomposition and Mode Scalings. Astrophys. J. 2010, 720, 742–756. [Google Scholar] [CrossRef]
- Brandenburg, A.; Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 2005, 417, 1–209. [Google Scholar] [CrossRef]
- Tobias, S. The turbulent dynamo. J. Fluid Mech. 2021, 912, P1. [Google Scholar] [CrossRef]
- Garland, G.D. The contributions of Carl Friedrich Gauss to geomagnetism. Hist. Math. 1979, 6, 5–29. [Google Scholar] [CrossRef]
- Arctowski, H. On solar faculae and solar constant variations. Proc. Natl. Acad. Sci. USA 1940, 26, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.E. 16. On the Probable Existence of a Magnetic Field in Sun-Spots. In A Source Book in Astronomy and Astrophysics, 1900–1975; Harvard University Press: Cambridge, MA, USA, 2013; pp. 96–105. [Google Scholar]
- Mclntosh, P.S.; Dryer, M. Solar Activity Observations and Predictions; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1972. [Google Scholar]
- Hall, J.C.; Lockwood, G. The Solar Activity Cycle. I. Observations of the End of Cycle 22, 1993 September-1997 February. Astrophys. J. 1998, 493, 494. [Google Scholar] [CrossRef]
- Baliunas, S.L.; Vaughan, A.H. Stellar activity cycles. Annu. Rev. Astron. Astrophys. 1985, 23, 379–412. [Google Scholar] [CrossRef]
- Howard, W.S.; Corbett, H.; Law, N.M.; Ratzloff, J.K.; Galliher, N.; Glazier, A.L.; Gonzalez, R.; Soto, A.V.; Fors, O.; Del Ser, D.; et al. EvryFlare. III. Temperature evolution and habitability impacts of dozens of superflares observed simultaneously by evryscope and TESS. Astrophys. J. 2020, 902, 115. [Google Scholar] [CrossRef]
- Parker, E.N. Hydromagnetic dynamo models. Astrophys. J. 1955, 122, 293. [Google Scholar] [CrossRef]
- Moffatt, H.K. Field Generation in Electrically Conducting Fluids; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA; Melbourne, Australia, 1978; Volume 2, p. 5-1. [Google Scholar]
- Rincon, F. Dynamo theories. J. Plasma Phys. 2019, 85, 205850401. [Google Scholar] [CrossRef]
- Beresnyak, A. MHD turbulence. Living Rev. Comput. Astrophys. 2019, 5, 2. [Google Scholar] [CrossRef]
- Xu, S.; Lazarian, A. Small-scale turbulent dynamo in astrophysical environments: Nonlinear dynamo and dynamo in a partially ionized plasma. Rev. Mod. Plasma Phys. 2021, 5, 2. [Google Scholar] [CrossRef]
- Zeldovich, I.B.; Ruzmaikin, A.A.; Sokolov, D.D. Magnetic Fields in Astrophysics; Cambridge University Press: New York, NY, USA, 1983; p. 3. [Google Scholar]
- Childress, S.; Gilbert, A.D. Stretch, Twist, Fold: The Fast Dynamo; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995; Volume 37. [Google Scholar]
- Kazantsev, A. Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 1968, 26, 1031–1034. [Google Scholar]
- Kraichnan, R.H.; Nagarajan, S. Growth of turbulent magnetic fields. Phys. Fluids 1967, 10, 859–870. [Google Scholar] [CrossRef]
- Xu, S.; Lazarian, A. Turbulent dynamo in a conducting fluid and a partially ionized gas. Astrophys. J. 2016, 833, 215. [Google Scholar] [CrossRef]
- Chertkov, M.; Falkovich, G.; Kolokolov, I.; Vergassola, M. Small-scale turbulent dynamo. Phys. Rev. Lett. 1999, 83, 4065. [Google Scholar] [CrossRef]
- Alexander, A.S.; Steven, C.C.; Samuel, F.T.; Jason, L.M.; James, C.M. Simulations of the Small-Scale Turbulent Dynamo. Astrophys. J. 2004, 612, 276–307. [Google Scholar]
- Xu, S. Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications; Springer Business Media: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lazarian, A.; Eyink, G.L.; Jafari, A.; Kowal, G.; Li, H.; Xu, S.; Vishniac, E.T. 3D turbulent reconnection: Theory, tests, and astrophysical implications. Phys. Plasmas 2020, 27, 012305. [Google Scholar] [CrossRef]
- Lazarian, A.; Zhang, B.; Xu, S. Gamma-Ray Bursts Induced by Turbulent Reconnection. Astrophys. J. 2019, 882, 184. [Google Scholar] [CrossRef]
- Kowal, G.; Lazarian, A.; Vishniac, E.T.; Otmianowska-Mazur, K. Numerical Tests of Fast Reconnection in Weakly Stochastic Magnetic Fields. Astrophys. J. 2009, 700, 63–85. [Google Scholar] [CrossRef]
- Kowal, G.; Lazarian, A.; Vishniac, E.T.; Otmianowska-Mazur, K. Reconnection studies under different types of turbulence driving. Nonlinear Process. Geophys. 2012, 19, 297–314. [Google Scholar] [CrossRef]
- Sych, R.; Karlický, M.; Altyntsev, A.; Dudík, J.; Kashapova, L. Sunspot waves and flare energy release. Astron. Astrophys. 2015, 577, A43. [Google Scholar] [CrossRef]
- Chitta, L.; Lazarian, A. Onset of turbulent fast magnetic reconnection observed in the solar atmosphere. Astrophys. J. Lett. 2020, 890, L2. [Google Scholar] [CrossRef]
- Abramenko, V.I. Signature of the turbulent component of the solar dynamo on active region scales and its association with flaring activity. Mon. Not. R. Astron. Soc. 2021, 507, 3698–3706. [Google Scholar] [CrossRef]
- Kowal, G.; Falceta-Gonçalves, D.A.; Lazarian, A.; Vishniac, E.T. Kelvin–Helmholtz versus tearing instability: What drives turbulence in stochastic reconnection? Astrophys. J. 2020, 892, 50. [Google Scholar] [CrossRef]
- Beresnyak, A. Three-dimensional Spontaneous Magnetic Reconnection. Astrophys. J. 2017, 834, 47. [Google Scholar] [CrossRef]
- Oishi, J.S.; Mac Low, M.M.; Collins, D.C.; Tamura, M. Self-generated turbulence in magnetic reconnection. Astrophys. J. Lett. 2015, 806, L12. [Google Scholar] [CrossRef]
- Kowal, G.; Falceta-Gonçalves, D.A.; Lazarian, A.; Vishniac, E.T. Statistics of Reconnection-driven Turbulence. Astrophys. J. 2017, 838, 91. [Google Scholar] [CrossRef]
- Lazarian, A. Production of the large scale superluminal ejections of the microquasar GRS 1915+ 105 by violent magnetic reconnection. Astron. Astrophys. 2005, 441, 845–853. [Google Scholar]
- Kowal, G.; de Gouveia Dal Pino, E.M.; Lazarian, A. Magnetohydrodynamic Simulations of Reconnection and Particle Acceleration: Three-dimensional Effects. Astrophys. J. 2011, 735, 102. [Google Scholar] [CrossRef]
- Eyink, G.; Vishniac, E.; Lalescu, C.; Aluie, H.; Kanov, K.; Bürger, K.; Burns, R.; Meneveau, C.; Szalay, A. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence. Nature 2013, 497, 466–469. [Google Scholar] [CrossRef]
- Lazarian, A.; Esquivel, A.; Crutcher, R. Magnetization of Cloud Cores and Envelopes and Other Observational Consequences of Reconnection Diffusion. Astrophys. J. 2012, 757, 154. [Google Scholar] [CrossRef]
- Yuen, K.H.; Ho, K.W.; Law, C.Y.; Chen, A.; Lazarian, A. Turbulent universal galactic Kolmogorov velocity cascade over 6 decades. arXiv 2022, arXiv:2204.13760. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, B. Scatter broadening of pulsars and implications on the interstellar medium turbulence. Astrophys. J. 2017, 835, 2. [Google Scholar] [CrossRef]
- Mestel, L.; Spitzer, L., Jr. Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 1956, 116, 503. [Google Scholar] [CrossRef]
- Mestel, L. The magnetic field of a contracting gas cloud. I, Strict flux-freezing. Mon. Not. R. Astron. Soc. 1966, 133, 265. [Google Scholar] [CrossRef]
- Shu, F.H.; Adams, F.C.; Lizano, S. Star formation in molecular clouds: Observation and theory. Annu. Rev. Astron. Astrophys. 1987, 25, 23–81. [Google Scholar] [CrossRef]
- Mouschovias, T.C. Magnetic braking, ambipolar diffusion, cloud cores, and star formation-Natural length scales and protostellar masses. Astrophys. J. 1991, 373, 169–186. [Google Scholar] [CrossRef]
- Nakano, T.; Nishi, R.; Umebayashi, T. Mechanism of magnetic flux loss in molecular clouds. Astrophys. J. 2002, 573, 199. [Google Scholar] [CrossRef]
- Shu, F.H.; Li, Z.Y.; Allen, A. Does Magnetic Levitation or Suspension Define the Masses of Forming Stars? Astrophys. J. 2004, 601, 930–951. [Google Scholar] [CrossRef]
- Mouschovias, T.C.; Tassis, K.; Kunz, M.W. Observational Constraints on the Ages of Molecular Clouds and the Star Formation Timescale: Ambipolar-Diffusion-controlled or Turbulence-induced Star Formation? Astrophys. J. 2006, 646, 1043–1049. [Google Scholar] [CrossRef]
- Mestel, L. Problems of Star Formation—I. Q. J. R. Astron. Soc. 1965, 6, 161. [Google Scholar]
- Mestel, L. Problems of Star Formation—II. Q. J. R. Astron. Soc. 1965, 6, 265. [Google Scholar]
- Zuckerman, B.; Evans, N.J., II. Models of Massive Molecular Clouds. Astrophys. J. 1974, 192, L149. [Google Scholar] [CrossRef]
- Galli, D.; Lizano, S.; Shu, F.H.; Allen, A. Gravitational Collapse of Magnetized Clouds. I. Ideal Magnetohydrodynamic Accretion Flow. Astrophys. J. 2006, 647, 374–381. [Google Scholar] [CrossRef]
- Johns-Krull, C.M. The Magnetic Fields of Classical T Tauri Stars. Astrophys. J. 2007, 664, 975–985. [Google Scholar] [CrossRef]
- Santos-Lima, R.; Guerrero, G.; de Gouveia Dal Pino, E.; Lazarian, A. Diffusion of large-scale magnetic fields by reconnection in MHD turbulence. Mon. Not. R. Astron. Soc. 2021, 503, 1290–1309. [Google Scholar] [CrossRef]
- Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E.M.; Cho, J. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection. Astrophys. J. 2010, 714, 442–461. [Google Scholar] [CrossRef]
- Longair, M.S. High Energy Astrophysics; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Parker, E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 1965, 13, 9–49. [Google Scholar] [CrossRef]
- Jokipii, J.R. Propagation of cosmic rays in the solar wind. Rev. Geophys. Space Phys. 1971, 9, 27–87. [Google Scholar] [CrossRef]
- Singer, H.J.; Heckman, G.R.; Hirman, J.W. Space weather forecasting: A grand challenge. Wash. Am. Geophys. Union Geophys. Monogr. Ser. 2001, 125, 23–29. [Google Scholar] [CrossRef]
- Ipavich, F.M. Galactic winds driven by cosmic rays. Astrophys. J. 1975, 196, 107–120. [Google Scholar] [CrossRef]
- Holguin, F.; Ruszkowski, M.; Lazarian, A.; Farber, R.; Yang, H.Y.K. Role of cosmic-ray streaming and turbulent damping in driving galactic winds. Mon. Not. R. Astron. Soc. 2019, 490, 1271–1282. [Google Scholar] [CrossRef]
- Guo, F.; Oh, S.P. Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 2008, 384, 251–266. [Google Scholar] [CrossRef]
- Brunetti, G.; Jones, T.W. Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. Int. J. Mod. Phys. 2014, 23, 1430007. [Google Scholar] [CrossRef]
- Kulsrud, R.; Pearce, W.P. The Effect of Wave-Particle Interactions on the Propagation of Cosmic Rays. Astrophys. J. 1969, 156, 445. [Google Scholar] [CrossRef]
- Yan, H.; Lazarian, A. Scattering of Cosmic Rays by Magnetohydrodynamic Interstellar Turbulence. Phys. Rev. Lett. 2002, 89, 281102. [Google Scholar] [CrossRef] [PubMed]
- Farmer, A.J.; Goldreich, P. Wave Damping by Magnetohydrodynamic Turbulence and Its Effect on Cosmic-Ray Propagation in the Interstellar Medium. Astrophys. J. 2004, 604, 671–674. [Google Scholar] [CrossRef]
- Lazarian, A. Damping of Alfvén Waves by Turbulence and Its Consequences: From Cosmic-ray Streaming to Launching Winds. Astrophys. J. 2016, 833, 131. [Google Scholar] [CrossRef]
- Xu, S.; Lazarian, A. Shock Acceleration with Oblique and Turbulent Magnetic Fields. Astrophys. J. 2022, 925, 48. [Google Scholar] [CrossRef]
- Lazarian, A.; Xu, S. Damping of Alfvén Waves in MHD Turbulence and Implications for Cosmic Ray Streaming Instability and Galactic Winds. Front. Phys. 2022, 10, 702799. [Google Scholar] [CrossRef]
- Yan, H.; Lazarian, A. Cosmic-ray propagation: Nonlinear diffusion parallel and perpendicular to mean magnetic field. Astrophys. J. 2008, 673, 942. [Google Scholar] [CrossRef]
- Jokipii, J.R. Cosmic-Ray Propagation. I. Charged Particles in a Random Magnetic Field. Astrophys. J. 1966, 146, 480. [Google Scholar] [CrossRef]
- Schlickeiser, R.; Miller, J.A. Quasi-linear Theory of Cosmic-Ray Transport and Acceleration: The Role of Oblique Magnetohydrodynamic Waves and Transit-Time Damping. Astrophys. J. 1998, 492, 352. [Google Scholar] [CrossRef]
- Giacalone, J.; Jokipii, J.R. The Transport of Cosmic Rays across a Turbulent Magnetic Field. Astrophys. J. 1999, 520, 204–214. [Google Scholar] [CrossRef]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Matthaeus, W.H.; Goldstein, M.L.; Roberts, D.A. Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. Space Phys. 1990, 95, 20673–20683. [Google Scholar] [CrossRef]
- Lazarian, A.; Yan, H. Superdiffusion of Cosmic Rays: Implications for Cosmic Ray Acceleration. Astrophys. J. 2014, 784, 38. [Google Scholar] [CrossRef]
- Lazarian, A.; Yan, H. Grain Dynamics in Magnetized Interstellar Gas. Astrophys. J. 2002, 566, L105–L108. [Google Scholar] [CrossRef]
- Xu, S.; Lazarian, A. Resonance-broadened Transit Time Damping of Particles in MHD Turbulence. Astrophys. J. 2018, 868, 36. [Google Scholar] [CrossRef]
- Lazarian, A.; Xu, S. Diffusion of Cosmic Rays in MHD Turbulence with Magnetic Mirrors. Astrophys. J. 2021, 923, 53. [Google Scholar] [CrossRef]
- Andersson, B.; Lazarian, A.; Vaillancourt, J.E. Interstellar dust grain alignment. Annu. Rev. Astron. Astrophys. 2015, 53, 501–539. [Google Scholar] [CrossRef]
- Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2016, 24, 4. [Google Scholar] [CrossRef]
- González-Casanova, D.F.; Lazarian, A. Velocity gradients as a tracer for magnetic fields. Astrophys. J. 2017, 835, 41. [Google Scholar] [CrossRef]
- Yuen, K.H.; Lazarian, A. Tracing interstellar magnetic field using velocity gradient technique: Application to atomic hydrogen data. Astrophys. J. Lett. 2017, 837, L24. [Google Scholar] [CrossRef]
- Lazarian, A.; Yuen, K.H. Tracing Magnetic Fields with Spectroscopic Channel Maps. Astrophys. J. 2018, 853, 96. [Google Scholar] [CrossRef]
- Lazarian, A.; Yuen, K.H.; Lee, H.; Cho, J. Synchrotron intensity gradients as tracers of interstellar magnetic fields. Astrophys. J. 2017, 842, 30. [Google Scholar] [CrossRef]
- Lazarian, A.; Yuen, K.H. Gradients of Synchrotron Polarization: Tracing 3D Distribution of Magnetic Fields. Astrophys. J. 2018, 865, 59. [Google Scholar] [CrossRef]
- Ho, K.W.; Yuen, K.H.; Leung, P.K.; Lazarian, A. A Comparison between Faraday Tomography and Synchrotron Polarization Gradients. Astrophys. J. 2019, 887, 258. [Google Scholar] [CrossRef]
- Hu, Y.; Lazarian, A.; Beck, R.; Xu, S. Role of magnetic fields in fueling Seyfert nuclei. Astrophys. J. 2022, 941, 92. [Google Scholar] [CrossRef]
- Hu, Y.; Yuen, K.H.; Lazarian, V.; Ho, K.W.; Benjamin, R.A.; Hill, A.S.; Lockman, F.J.; Goldsmith, P.F.; Lazarian, A. Magnetic field morphology in interstellar clouds with the velocity gradient technique. Nat. Astron. 2019, 3, 776–782. [Google Scholar] [CrossRef]
Type | Injection | Range | Spectrum | Motion | Ways | Magnetic | Squared Separation |
---|---|---|---|---|---|---|---|
of MHD Turbulence | Velocity | of Scales | E(k) | Type | of Study | Diffusion | of Lines |
Weak | wave-like | analytical | diffusion | ||||
Strong | anisotropic | ||||||
subAlfvenic | eddy-like | numerical | Richardson | ||||
Strong | isotropic | ||||||
superAlfvenic | eddy-like | numerical | diffusion | ||||
Strong | anisotropic | ||||||
superAlfvenic | eddy-like | numerical | Richardson |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, E.; Lazarian, A. Outlook on Magnetohydrodynamical Turbulence and Its Astrophysical Implications. Fluids 2023, 8, 142. https://doi.org/10.3390/fluids8050142
Popova E, Lazarian A. Outlook on Magnetohydrodynamical Turbulence and Its Astrophysical Implications. Fluids. 2023; 8(5):142. https://doi.org/10.3390/fluids8050142
Chicago/Turabian StylePopova, Elena, and Alexandre Lazarian. 2023. "Outlook on Magnetohydrodynamical Turbulence and Its Astrophysical Implications" Fluids 8, no. 5: 142. https://doi.org/10.3390/fluids8050142
APA StylePopova, E., & Lazarian, A. (2023). Outlook on Magnetohydrodynamical Turbulence and Its Astrophysical Implications. Fluids, 8(5), 142. https://doi.org/10.3390/fluids8050142