A Numerical Evaluation of Airborne Transmission Control through Saliva Modification
Abstract
:1. Introduction
2. Methods
2.1. Computational Model Formulation
2.1.1. Model Summary
2.1.2. Approach to Assessing Saliva Modifiers
2.2. Comparison with Experiment
2.3. Mesh Sensitivity Study
3. Results
3.1. Dispersive Velocity Characteristic
3.2. Dispersion Due to Turbulence
3.3. Early-Stage Dispersion and Impact of Saliva Modifiers
3.4. Late-Stage Dispersion and Impact of Saliva Modifiers
3.5. Evaluation of Saliva Modifiers on Transmission Probability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
CFD | Computational Fluid Dynamics |
WHO | World Health Organization |
HVAC | Heating, Ventilation, and Air Conditioning |
OPC | Optical Particle Counting |
APS | Aerodynamic Particle Sizing |
SMPS | Scanning Mobility Particle Sizing |
URT | Upper Respiratory Tract |
DES | Detached Eddy Simulation |
PSD | Particle Size Distribution |
LES | Large Eddy Simulation |
URANS | Unsteady Reynolds-Averaged Navier–Stokes |
TAB | Taylor Analogy Breakup |
Variables | |
density | |
grad operator | |
time () | |
velocity field | |
pressure field | |
reference pressure | |
gravity vector | |
shear stress tensor | |
specific heat capacity at constant pressure | |
temperature | |
thermal conductivity | |
energy source term during the evaporation process | |
diffusion coefficient for species n in the mixture | |
local mass fraction of species | |
mass fraction source term | |
mass fraction of each term | |
I | identity tensor |
energy per unit mass | |
R | ideal gas constant |
We | Weber number, |
critical Weber number | |
turbulent viscosity | |
turbulent Prandtl number, | |
turbulent Schmidt number, | |
diffusion coefficient | |
Oh | Ohnesorge number, |
relative velocity between droplet and flow medium | |
D | droplet diameter |
surface tension of droplet | |
droplet dynamic viscosity | |
rate of mass change | |
B | Spalding transfer number, |
mass transfer conductance |
References
- Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 15 December 2021).
- Dbouk, T.; Drikakis, D. On respiratory droplets and face masks. Phys. Fluids 2020, 32, 063303. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, A.A.; Rogak, S.N.; Green, S.I.; Bartlett, K.H. CFD simulation of human coughs and sneezes: A study in droplet dispersion, heat, and mass transfer. ASME Int. Mech. Eng. Congr. Expo. Proc. 2010, 7, 1051–1060. [Google Scholar] [CrossRef]
- Pilch, M.; Erdman, C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 1987, 13, 741–757. [Google Scholar] [CrossRef]
- Omidvar, A. Development and assessment of an improved droplet breakup model for numerical simulation of spray in a turbulent flow field. Appl. Therm. Eng. 2019, 156, 432–443. [Google Scholar] [CrossRef]
- Ortiz, C.; Joseph, D.D.; Beavers, G.S. Acceleration of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 2004, 30, 217–224. [Google Scholar] [CrossRef]
- Wells, W.F.; Stone, W.R. ON AIR-BORNE INFECTION: STUDY III. VIABILITY OF DROPLET NUCLEI INFECTION. Am. J. Epidemiol. 1934, 20, 619–627. [Google Scholar] [CrossRef]
- Reyes, J.; Fontes, D.; Bazzi, A.; Otero, M.; Ahmed, K.; Kinzel, M. Effect of saliva fluid properties on pathogen transmissibility. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Buonanno, G.; Mikszewski, A.; Stabile, L. The physics of respiratory particle generation, fate in the air, and inhalation. Nat. Rev. Phys. 2022, 4, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Seminara, G.; Carli, B.; Forni, G.; Fuzzi, S.; Mazzino, A.; Rinaldo, A. Biological fluid dynamics of airborne COVID-19 infection. Rend. Lincei. Sci. Fis. e Nat. 2020, 31, 8. [Google Scholar] [CrossRef]
- Chao, C.Y.H.; Wan, M.P.; Morawska, L.; Johnson, G.R.; Ristovski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Li, Y.; Xie, X.; et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 2009, 40, 122–133. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Zhang, X.; Zhu, L.; Liu, Y.; Wang, S. The motion of respiratory droplets produced by coughing. Phys. Fluids 2020, 32, 125102. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Meneveau, C.; Wu, W. A mathematical framework for estimating risk of airborne transmission of COVID-19 with application to face mask use and social distancing. Phys. Fluids 2020, 32, 101903. [Google Scholar] [CrossRef] [PubMed]
- Katre, P.; Banerjee, S.; Balusamy, S.; Sahu, K.C. Fluid dynamics of respiratory droplets in the context of COVID-19: Airborne and surfaceborne transmissions. Phys. Fluids 2021, 33, 081302. [Google Scholar] [CrossRef]
- Stiehl, B.; Shrestha, R.; Schroeder, S.; Delgado, J.; Bazzi, A.; Reyes, J.; Kinzel, M.; Ahmed, K. The effect of relative air humidity on the evaporation timescales of a human sneeze COLLECTIONS The effect of relative air humidity on the evaporation timescales of a human sneeze. AIP Adv. 2022, 12, 75210. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, H.; Wan, X.F. Transport and fate of human expiratory droplets—A modeling approach. Phys. Fluids 2020, 32, 083307. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Insight on the evaporation dynamics in reducing the COVID-19 infection triggered by respiratory droplets. Phys. Fluids 2021, 33, 072004. [Google Scholar] [CrossRef]
- Schroeder, S.; Stiehl, B.; Delgado, J.; Shrestha, R.; Kinzel, M.; Ahmed, K. Interactions of Aerosol Droplets with Ventilated Airflows in the Context of Airborne Pathogen Transmission. In Proceedings of the ASME 2022 Fluids Engineering Division Summer Meeting, Toronto, ON, Canada, 3–5 August 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Downing, G.H.; Hardalupas, Y.; Archer, J.; Symons, H.E.; Baloglu, U.B.; Schien, D.; Bzdek, B.R.; Reid, J.P. Computational and Experimental Study of Aerosol Dispersion in a Ventilated Room. Aerosol Sci. Technol. 2022, 57, 50–62. [Google Scholar] [CrossRef]
- Craven, B.A.; Settles, G.S. A computational and experimental investigation of the human thermal plume. J. Fluids Eng. Trans. ASME 2006, 128, 1251–1258. [Google Scholar] [CrossRef]
- Mohamadi, F.; Fazeli, A. A Review on Applications of CFD Modeling in COVID-19 Pandemic. Arch. Comput. Methods Eng. 2022, 29, 3567–3586. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; He, S.; Shen, L.; Hong, J. Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant. Phys. Fluids 2021, 33, 023301. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.R.; Yang, S. Airborne transmission of virus-laden aerosols inside a music classroom: Effects of portable purifiers and aerosol injection rates. Phys. Fluids 2021, 33, 033307. [Google Scholar] [CrossRef] [PubMed]
- Ramajo, D.E.; Corzo, S. Airborne Transmission Risk in Urban Buses: A Computational Fluid Dynamics Study. Aerosol Air Qual. Res. 2022, 22, 210334. [Google Scholar] [CrossRef]
- Schreck, J.H.; Lashaki, M.J.; Hashemi, J.; Dhanak, M.; Verma, S. Aerosol generation in public restrooms. Phys. Fluids 2021, 33, 033320. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.; Kinzel, M. SARS-CoV-2 transmission in classroom settings: Effects of mitigation, age, and Delta variant. Phys. Fluids 2021, 33, 113311. [Google Scholar] [CrossRef] [PubMed]
- Fontes, D.; Reyes, J.; Ahmed, K.; Kinzel, M. A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze. Phys. Fluids 2020, 32, 111904. [Google Scholar] [CrossRef] [PubMed]
- Krishnaprasad, K.A.; Zgheib, N.; Choudhary, K.; Ha, M.Y.; Choi, C.Y.; Bang, K.S.; Jang, S.; Balachandar, S. Existence of a Nonzero Worst-Case ACH for Short-Term Exposure in Ventilated Indoor Spaces. Indoor Air 2024, 2024, 6642205. [Google Scholar] [CrossRef]
- Sarhan, A.A.R.; Naser, P.; Naser, J. Numerical study of when and who will get infected by coronavirus in passenger car. Environ. Sci. Pollut. Res. 2022, 29, 57232–57247. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, A.A.R.; Naser, P.; Naser, J. Aerodynamic Prediction of Time Duration to Becoming Infected with Coronavirus in a Public Place. Fluids 2022, 7, 176. [Google Scholar] [CrossRef]
- Sarhan, A.R.; Naser, P.; Naser, J. COVID-19 aerodynamic evaluation of social distancing in indoor environments, a numerical study. J. Environ. Health Sci. Eng. 2021, 19, 1969–1978. [Google Scholar] [CrossRef]
- Hall, D. The Relationship of Fabric Properties and Bacterial Filtration Efficiency for Selected Surgical Face Masks. No. January 2003. 2014. Available online: https://www.researchgate.net/publication/242297437_The_Relationship_of_Fabric_Properties_and_Bacterial_Filtration_Efficiency_for_Selected_Surgical_Face_Masks (accessed on 21 September 2024).
- Drewnick, F.; Pikmann, J.; Fachinger, F.; Moormann, L.; Sprang, F.; Borrmann, S. Aerosol filtration efficiency of household materials for homemade face masks: Influence of material properties, particle size, particle electrical charge, face velocity, and leaks. Aerosol Sci. Technol. 2021, 55, 63–79. [Google Scholar] [CrossRef]
- Siemens Digital Industries Software. Simcenter STAR-CCM+, Siemens. 2021. Available online: https://www.plm.automation.siemens.com/global/en/%0Aproducts/simcenter/STAR-CCM.html (accessed on 21 September 2024).
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y.; Han, Z.Y.; Huang, Q.Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R. Soc. Interface 2013, 10. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents 2020, 55, 105951. [Google Scholar] [CrossRef] [PubMed]
- Spalart, P.R. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. January 1997, Conference: Advances in DNS/LES. Available online: https://www.researchgate.net/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach (accessed on 21 September 2024).
- Continescu, G.; Pacheco, R.; Squires, K. Detached-eddy simulation of flow over a sphere. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002; p. 425. [Google Scholar]
- Spalart, P.; Allmaras, S. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992. [Google Scholar]
- Schiller, L. Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Vereines Dtsch. Inge. 1933, 77, 318–321. [Google Scholar]
- Ranz, W.E. Evaporation from drops, Parts I & II. Chem. Eng. Process. 1952, 141–146. Available online: https://www.semanticscholar.org/paper/Evaporation-from-drops-Ranz/e3fa177e8eb44fb0cc81e57895d93b19e605be5d (accessed on 21 September 2024).
- Scharfman, B.E.; Techet, A.H.; Bush, J.W.M.; Bourouiba, L. Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 2016, 57, 24. [Google Scholar] [CrossRef] [PubMed]
- Guildenbecher, D.R.; López-Rivera, C.; Sojka, P.E. Secondary atomization. Exp. Fluids 2009, 46, 371–402. [Google Scholar] [CrossRef]
- O’Rourke, P.; Amsden, A. The TAB Method for Numerical Calculation of Spray Droplet Breakup. In Proceedings of the SAE International Fall Fuels and Lubricants Meeting and Exposition, Toronto, ON, Canada, 2–5 November 1987; Available online: https://digital.library.unt.edu/ark:/67531/metadc1106123/m1/1/ (accessed on 21 September 2024).
- Gidreta, B.T.; Kim, H. Effects of physical property changes of expelled respiratory liquid on atomization morphology. J. Fluid Mech. 2023, 960, 1–12. [Google Scholar] [CrossRef]
Model | Value/Option | Comments |
---|---|---|
Turbulence | Spalart–Allmaras DES | Fully turbulent, all- wall model, implicit, unsteady |
Solver | Segregated flow | Segregated in terms of flow, species, and energy |
Time Stepping | Adaptive time stepping | The minimum time step of 1 × 10−5 s accounts for the exponential flow of sneezing at the beginning |
Meshing | Hex dominant with prism layers | Hex dominant with 12 prism layers around the wall, body wall, and URT |
S.N. | Saliva Modifier | Mean Droplet Size (Relative to Base Size) | Viscosity ) | ) |
---|---|---|---|---|
1 | Base Case (Saliva) | 1 | 1.36 | 1.07 |
2 | Cornstarch | 1.5 | 1.43 | 1.07 |
3 | Xanthum Gum | 1.25 | 28.94 | 1.07 |
4 | Sugar-Based Lozenge | 1.5 | 1.79 | 2.28 |
5 | Zingiber officinale | 0.5 | 1.36 | 0.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, R.; Fontes, D.; Kinzel, M. A Numerical Evaluation of Airborne Transmission Control through Saliva Modification. Fluids 2024, 9, 228. https://doi.org/10.3390/fluids9100228
Shrestha R, Fontes D, Kinzel M. A Numerical Evaluation of Airborne Transmission Control through Saliva Modification. Fluids. 2024; 9(10):228. https://doi.org/10.3390/fluids9100228
Chicago/Turabian StyleShrestha, Rajendra, Douglas Fontes, and Michael Kinzel. 2024. "A Numerical Evaluation of Airborne Transmission Control through Saliva Modification" Fluids 9, no. 10: 228. https://doi.org/10.3390/fluids9100228
APA StyleShrestha, R., Fontes, D., & Kinzel, M. (2024). A Numerical Evaluation of Airborne Transmission Control through Saliva Modification. Fluids, 9(10), 228. https://doi.org/10.3390/fluids9100228