Modelling the Flow in the Utah FORGE Wells Disrete Fracture Network
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Methodology
2.2. Direction and Angle of Fracture
- The strike represents the orientation of a planar feature. The strike can be described as the direction of the red line in Figure 4 as occurred at the intersection of horizontal plane and the plane of interest (the blue plane). The strike direction can be measured by a compass.
- The term dip refers to the angle of inclination of a planar feature as measured from a horizontal datum (see Figure 4). This measurement refers to the angle (inclination) of a planar feature. In other words, the dip angle is the angle between the horizontal plane and the plane of interest. The dip direction can be determined by moving 90 degrees clockwise from the strike direction. The strike direction in Figure 4 is 000, therefore the dip direction will be due east or 90°.
- The pitch of the line refers to the angle between the horizontal line and the line of interest (the yellow line in Figure 5b) within the plane.
3. The Use of Hele-Shaw Approximation in Practice
3.1. Mesh and Boundary Conditions
3.2. Verification
4. Results and Discussion
4.1. Impact of Number of Fractures
4.2. The Effect of Fracture Aperture
4.3. The Effect of Fracture Frequency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSE | Navier–Stokes equations |
HS | Hele-Shaw |
CL | Cubic Law |
DFN | Discrete Fracture Networks |
CB | Coefficient Form Boundary PDE |
SPF | Single-phase laminar flow |
EGS | Enhanced Geothermal Systems |
DOE | US Department of Energy |
FORGE | Frontier Observatory for Research in Geothermal Energy |
TOUGH2 | Transport of Unsaturated Groundwater and Heat |
FMI | Formation Micro-Imager Logs |
DEM | Distinct Element Method |
ISPM | International Society of Rock mechanics |
GPU | Graphics Processing Unit |
FMI | Formation Micro Imager |
GMRES | Generalized Minimal Residual |
MUMPS | MUltifrontal Massively Parallel Sparse direct Solver |
Appendix A. Hele Shaw Approximation
References
- Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Genter, A.; Evans, K.; Cuenot, N.; Fritsch, D.; Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus-Geosci. 2010, 342, 502–516. [Google Scholar] [CrossRef]
- Aliyu, M.D.; Archer, R.A. A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir. Renew. Energy 2021, 176, 475–493. [Google Scholar] [CrossRef]
- Kirby, S.M.; Knudsen, T.R.; Kleber, E.; Hiscock, A. Utah FORGE: Geology Map and GIS Data; Technical report, DOE Geothermal Data Repository; Energy and Geoscience Institute: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Golder, A. FracMan® Reservoir Edition Software, Version 7.7; Discrete Fracture Network Simulator; FracMan Software: Redmond, WA, USA, 2019. [Google Scholar]
- Nash, G.; Moore, J. Utah FORGE: Logs and Data from Deep Well 58-32 (MU-ESW1); Technical Report, DOE Geothermal Data Repository; Energy and Geoscience Institute at the University of Utah: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Finnila, A.; Forbes, B.; Podgorney, R. Building and Utilizing a Discrete Fracture Network Model of the FORGE Utah Site. In Proceedings of the 44th Workhop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 11–13 February 2019; pp. 1–12. [Google Scholar]
- Nadimi, S.; Forbes, B.; Moore, J.; Podgorney, R.; McLennan, J.D. Utah FORGE: Hydrogeothermal modeling of a granitic based discrete fracture network. Geothermics 2020, 87, 101853. [Google Scholar] [CrossRef]
- Podgorney, R.; Finnila, A.; Simmons, S.; McLennan, J. A Reference Thermal-Hydrologic-Mechanical Native State Model of the Utah FORGE Enhanced Geothermal Site. Energies 2021, 14, 4758. [Google Scholar] [CrossRef]
- Finsterle, S. iTOUGH2 Software User’s Guide; LBNL-40040; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999; Volume 130.
- Hardwick. Geophysical Surveys of the Milford, Utah, FORGE Site: Gravity and TEM. GRC Trans. 2018, 42, 14.I. [Google Scholar]
- Riahi, A.; Pettitt, W.; Damjanac, B.; Varun; Blanksma, D. Numerical Modeling of Discrete Fractures in a Field-Scale FORGE EGS Reservoir. Rock Mech. Rock Eng. 2019, 52, 5245–5258. [Google Scholar] [CrossRef]
- Lu, J.; Ghassemi, A. Coupled thermo–hydro–mechanical–seismic modeling of egs collab experiment 1. Energies 2021, 14, 446. [Google Scholar] [CrossRef]
- Kneafsey, T.J.; Dobson, P.F.; Ajo-Franklin, J.; Valladao, C.; Blankenship, D.A.; Knox, H.; Schwering, P.; Morris, J.; Smith, M.; White, M.D.; et al. The EGS collab project: Stimulation and simulation. In Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, OnePetro, Seattle, WA, USA, 17–20 June 2018. [Google Scholar]
- Kneafsey, T.J.; Dobson, P.; Blankenship, D.; Morris, J.; Knox, H.; Schwering, P.; White, M.; Doe, T.; Roggenthen, W.; Mattson, E.; et al. An overview of the EGS collab project: Field validation of coupled process modeling of fracturing and fluid flow at the sanford underground research facility, lead, SD. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- ENERGY, G. The EGS Collab Effort, Conducted Tests on Rock Core at LBNL; Research Report; US Government: Washington, DC, USA, 2019.
- Moore, J.; Mclennan, J.; Pankow, K.; Simmons, S.; Podgorney, R.; Wannamaker, P.; Jones, C.; Rickard, W.; Xing, P. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): A Laboratory for Characterizing, Creating and Sustaining Enhanced Geothermal Systems. In Proceedings of the 45th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 10–12 February 2020. [Google Scholar]
- El-Sapa, S.; Al-Hanaya, A. Effects of slippage and permeability of couple stress fluid squeezed between two concentric rotating spheres. Phys. Fluids 2023, 35, 103112. [Google Scholar] [CrossRef]
- Raddadi, M.H.; El-Sapa, S.; Elamin, M.A.; Chtioui, H.; Chteoui, R.; El-Bary, A.A.; Lotfy, K. Optoelectronic–thermomagnetic effect of a microelongated non-local rotating semiconductor heated by pulsed laser with varying thermal conductivity. Open Phys. 2024, 22, 20230145. [Google Scholar] [CrossRef]
- Al-Hanaya, A.; El-Sapa, S. Impact of slippage on the wall correction rotation factor of MHD couple stress fluid between two concentric spheres. Results Eng. 2023, 20, 101463. [Google Scholar] [CrossRef]
- Xing, P.; Damjanac, B.; Moore, J.; McLennan, J. Flowback Test Analyses at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site. Rock Mech. Rock Eng. 2021, 55, 1–18. [Google Scholar] [CrossRef]
- De Dreuzy, J.R.; Pichot, G.; Poirriez, B.; Erhel, J. Synthetic benchmark for modeling flow in 3D fractured media. Comput. Geosci. 2013, 50, 59–71. [Google Scholar] [CrossRef]
- Berrone, S.; Pieraccini, S.; Scialo, S. A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 2013, 35, B487–B510. [Google Scholar] [CrossRef]
- Witherspoon, P.A.; Wang, J.S.; Iwai, K.; Gale, J.E. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 1980, 16, 1016–1024. [Google Scholar] [CrossRef]
- Aghajannezhad, P.; Sellier, M.; Becker, S. Patching Hele-Shaw cells to investigate the flow at low Reynolds number in fracture networks. Transp. Porous Media 2021, 136, 147–163. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, K.K.; Yeo, I.W. Assessment of the validity of Stokes and Reynolds equations for fluid flow through a rough-walled fracture with flow imaging. Geophys. Res. Lett. 2014, 41, 4578–4585. [Google Scholar] [CrossRef]
- Aghajannezhad, P.; Sellier, M. The effects of surface roughness on the flow in multiple connected fractures. Fluid Dyn. Res. 2022, 54, 015504. [Google Scholar] [CrossRef]
- Aghajannezhad, P.; Sellier, M.; Becker, S. The effect of geometrical and topological changes on the fluid flow through large-scale discrete fracture networks. J. Porous Media 2022, 25, 17–41. [Google Scholar] [CrossRef]
- LEAPFROG. Discover Trends in Data with Leapfrog Geo; LEAPFROG: Emeryville, CA, USA, 2024. [Google Scholar]
- COMSOL Multiphysics. Coefficient Form Boundary PDE, Single Phase Laminar Flow; COMSOL: Stockholm, Sweden, 2021. [Google Scholar]
- Zimmerman, R.W.; Bodvarsson, G.S. Hydraulic conductivity of rock fractures. Transp. Porous Media 1996, 23, 1–30. [Google Scholar] [CrossRef]
- Earth Sci Lab. Strike and Dip; Technical report; Earth Sci Lab: Rogers, AR, USA, 2021; Available online: https://ilearn.laccd.edu/courses/141778 (accessed on 17 September 2024).
- Williams, C. Evaluating the volume method in the assessment of identified geothermal resources. Geotherm. Resour. Counc. Trans. 2014, 38, 967–974. [Google Scholar]
- Apollaro, C.; Vespasiano, G.; De Rosa, R.; Marini, L. Use of mean residence time and flowrate of thermal waters to evaluate the volume of reservoir water contributing to the natural discharge and the related geothermal reservoir volume. Application to Northern Thailand hot springs. Geothermics 2015, 58, 62–74. [Google Scholar] [CrossRef]
- Noyahr, C.V. Geothermal Reservoir Characterization of the South Swan Hills Oil Pool, Swan Hills, Alberta. ERA Education. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2022. [Google Scholar] [CrossRef]
- Barelli, A.; Ceccarelli, A.; Dini, I.; Fiordelisi, A.; Giorgi, N.; Lovari, F.; Romagnoli, P. A review of the Mt. Amiata geothermal system (Italy). In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010; Volume 2010, pp. 1–4. [Google Scholar]
- Upreti, B. An overview of the stratigraphy and tectonics of the Nepal Himalaya. J. Asian Earth Sci. 1999, 17, 577–606. [Google Scholar] [CrossRef]
- Aghli, G.; Fardin, H.; Mohamadian, R.; Saedi, G. Structural and fracture analysis using EMI and FMI image Log in the carbonate Asmari reservoir (Oligo-Miocene), SW Iran. Geopersia 2014, 4, 169–184. [Google Scholar]
- Finnila, A. Utah FORGE: Discrete Fracture Network (DFN) Data; Golder Associates Inc.: Redmond, WA, USA, 2021. [Google Scholar] [CrossRef]
- Teodoriu, C.; Falcone, G. Comparing completion design in hydrocarbon and geothermal wells: The need to evaluate the integrity of casing connections subject to thermal stresses. Geothermics 2009, 38, 238–246. [Google Scholar] [CrossRef]
- Allis, R.; Gwynn, M.; Hardwick, C.; Moore, J. The challenge of correcting bottom-hole temperatures—An example from FORGE 58-32, near Milford, Utah. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 12–14 February 2018; pp. 1–8. [Google Scholar]
- Zou, L.; Jing, L.; Cvetkovic, V. Modeling of flow and mixing in 3D rough-walled rock fracture intersections. Adv. Water Resour. 2017, 107, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, C.; Dowd, P. A Modified Cubic Law for single-phase saturated laminar flow in rough rock fractures. Int. J. Rock Mech. Min. Sci. 2018, 103, 107–115. [Google Scholar] [CrossRef]
- Wang, G.; Ma, X.; Song, X.; Li, G. Modeling flow and heat transfer of fractured reservoir: Implications for a multi-fracture enhanced geothermal system. J. Clean. Prod. 2022, 365, 132708. [Google Scholar] [CrossRef]
- Zimmerman, R.W.; Al-Yaarubi, A.; Pain, C.C.; Grattoni, C.A. Non-linear regimes of fluid flow in rock fractures. Int. J. Rock Mech. Min. Sci. 2004, 41, 1–7. [Google Scholar] [CrossRef]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 2012, 12, 515–545. [Google Scholar] [CrossRef] [PubMed]
P32 | N | QHS (m3/s) | Re | HR (Pa.s−1.m−3) |
---|---|---|---|---|
0.0221 | 350 | 4.21 | 1.62 | 2.374 |
0.0194 | 307 | 4.14 | 1.59 | 2.417 |
0.0185 | 293 | 3.03 | 1.16 | 3.302 |
0.0163 | 278 | 1.98 | 7.63 | 5.043 |
0.0148 | 253 | 1.73 | 6.66 | 5.773 |
h | QHS (m3/s) | Re | HR (Pa.s−1.m−3) |
---|---|---|---|
0.001 | 7.2 | 2.8 | 138.8 |
0.002 | 5.8 | 2.2 | 17.35 |
0.003 | 1.9 | 7.5 | 5.142 |
0.004 | 4.6 | 1.8 | 2.169 |
0.005 | 9.0 | 3.5 | 1.111 |
0.006 | 1.6 | 6.0 | 0.643 |
0.007 | 2.5 | 9.5 | 0.405 |
0.008 | 3.7 | 1.4 | 0.271 |
0.009 | 5.3 | 2.0 | 0.190 |
0.010 | 7.2 | 2.8 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghajannezhad, P.; Sellier, M. Modelling the Flow in the Utah FORGE Wells Disrete Fracture Network. Fluids 2024, 9, 229. https://doi.org/10.3390/fluids9100229
Aghajannezhad P, Sellier M. Modelling the Flow in the Utah FORGE Wells Disrete Fracture Network. Fluids. 2024; 9(10):229. https://doi.org/10.3390/fluids9100229
Chicago/Turabian StyleAghajannezhad, Pouria, and Mathieu Sellier. 2024. "Modelling the Flow in the Utah FORGE Wells Disrete Fracture Network" Fluids 9, no. 10: 229. https://doi.org/10.3390/fluids9100229
APA StyleAghajannezhad, P., & Sellier, M. (2024). Modelling the Flow in the Utah FORGE Wells Disrete Fracture Network. Fluids, 9(10), 229. https://doi.org/10.3390/fluids9100229